EXPERIMENTAL STUDY ON MECHANISM OF SHALLOW LOESS LANDSLIDES INDUCED BY RAINFALL
-
摘要: 黄土较松散,内部大孔隙和垂直节理发育,因其特殊的结构为雨水的快速入渗提供了通道。降雨型黄土浅层滑坡已造成了大量的经济损失与人员伤亡。为了有效减轻降雨诱发黄土滑坡对社会和经济的影响,开展降雨型滑坡室内实验研究,具有重大的现实意义。本文旨在研究不同降雨形式和不同坡体结构对黄土斜坡变形破坏过程影响,设计并进行了3组室内物理模型实验,分别为持续强降雨斜坡实验、持续强降雨斜坡(带垂直节理)实验和间歇性强降雨斜坡实验,且每组斜坡内埋设体积含水率传感器、基质吸力传感器和孔隙水压力传感器3种传感器记录其内部变化。通过对每一个黄土斜坡体内传感器的读数变化及实验现象进行分析,同时对不同实验条件下实验过程及结果进行对比,进而得出降雨条件下浅表层黄土滑坡的变形破坏规律,总结出该类滑坡的破坏模式及其诱发机理。实验前期,随着体积含水率不断增大,基质吸力逐渐减小至基本稳定,土体强度随之减小,实验后期上部土体饱和,斜坡产生的变形和土体排水不畅产生了超孔隙水压力,有效应力随之减小,土体强度减小至最小,导致滑坡产生。同时,坡体结构对斜坡稳定性的影响大于降雨形式的影响。Abstract: The loess is loose, and contains numerous large pores and vertical joints inside, which provides channels for the rapid infiltration of rainfall. The shallow loess landslides have caused significant casualties and economic losses. In order to effectively reduce the social and economic impact of landslides induced by rainfall, it is of great realistic significance to carry out the laboratory experimental study on rainfall-induced landslides. The purpose of this paper is to study the effects of different rainfall pattern and different slope structure on the deformation and failure process of loess slope. Three groups of indoor physical model experiments are designed and conducted. They include loess slope with continuous heavy rainfall, loess slope containing a vertical joint with continuous heavy rainfall, and loess slope with intermittent heavy rainfall. Three kinds of sensors including volume moisture sensors, matric suction sensors and pore water pressure sensors are buried to record the internal changes in each loess slope. Analyzing the changing readings of sensors and experimental phenomenon, and comparing the experimental procedures and results under the different experimental conditions disclose the deformation and failure law of shallow loess landslide under rainfall condition. The failure mode and triggering mechanism of this kind of landslides are summarized. The experimental results show that, in the early stage of the experiments, the matric suction of the loess decreased gradually and maintained stable in the end, therefore the strength reduced, with the continuous increases of volume moisture. In the later stage, the upper loess of the slope reached the saturation stage, excess pore water pressure generated by the slope deformation and poor drainage of the loess decreased the effective stress and the strength of the loess, and as a result, the strength reached the minimum, which resulted in landslides. And meanwhile, the influence of slope structure on slope stability is greater than that of rainfall pattern.
-
Key words:
- Loess slope /
- Rainfall /
- Landslide /
- Physical model experiment /
- Pore water pressure
-
表 1 黄土的物理参数
Table 1. Physical parameters of the loess
干重度
/kN·m-3天然
重度
/kN·m-3饱和
重度
/kN·m-3初始体积
含水率
/%饱和体积
含水率
/%竖向
渗透系数
/m·s-113.2 14.7 23.2 10 43 2.23×10-6 表 2 降雨实验方案
Table 2. Scheme of rainfall test
实验
类型降雨强度
/mm·h-1降雨
时间降雨
类型斜坡
类型持续强降雨 70 直至斜坡破坏 均匀型 均质斜坡 间歇性
强降雨70 每间隔24h
降雨1h,直至破坏间歇型 均质斜坡 持续强降雨 70 直至斜坡破坏 均匀型 带垂直
节理斜坡表 3 降雨滑坡发展过程和滑动时间
Table 3. Development and sliding time of rainfall-induced landslides
实验类型 斜坡特征 现象描述 累计降雨量/mm 滑动时间/min 强降雨 均质坡 ① 前缘坡脚侵蚀。② 后缘轻微沉降,距离坡肩约5cm处产生裂隙。③ 破坏较快,滑动距离近,滑面最浅。 373.3 320 强降雨 含垂直
节理斜坡① 坡脚冲蚀严重,形成临空面。② 裂隙处充满水,有轻微塌陷,裂隙向下扩展,湿润锋在裂隙处呈弧形。③ 破坏最快,滑动距离最小,滑动面最深。 318.5 273 间歇性
强降雨均质坡 ① 坡肩侵蚀,坡脚垮塌。② 降雨后一天内后缘产生许多微小裂隙,距离坡肩9cm,降雨时雨水侵入。③ 所需时间最长,滑动距离短。 415.3 7263
(5天1小时3分) -
Ali A, Huang J S, Lyamin A V, et al. 2014. Boundary effects of rainfall-induced landslides[J]. Computer sand Geotechnics, (61):341~354. http://research-repository.uwa.edu.au/en/publications/boundary-effects-of-rainfallinduced-landslides(5317849b-ee89-4485-914e-a7ca45ace626)/export.html Alimohammadlou Y, Najafi A, Gokceoglu C. 2014. Estimation of rainfall-induced landslides using ANN and fuzzy clustering methods:A case study in Saeen Slope, Azerbaijan province, Iran[J]. Catena, 120 (1):149~162. https://benthamopen.com/FULLTEXT/TOCIEJ-11-22 Chen H K, Tang H M. 2002. Research on start-up of loose landslide in lab[J]. Journal of Mountain Science, 20 (1):113~115. http://en.cnki.com.cn/Article_en/CJFDTOTAL-SDYA200201019.htm Chen S C, Chou H T, Chen S C, et al. 2014. Characteristics of rainfall-induced landslides in Miocene formations:A case study of the Shenmu watershed, Central Taiwan[J]. Engineering Geology, 169 (2):133~146. http://linkinghub.elsevier.com/retrieve/pii/S0013795213003384 Chen T J, Cai H L, Huang Y R, et al. 2012. Slope failure mode related to soil infiltration-laboratory rainfall model test.[J]. Research of Soil and Water Conservation, 19 (1):254~257. http://en.cnki.com.cn/Article_en/CJFDTOTAL-STBY201201055.htm Cheng J T, Cai Q, Chen X X. 2013. Development of gravelly soil landslides induced by rainfalls[J]. Soil Engineering and Foundation, 27 (2):118~121, 127. Cui P, Guo C X, Zhou J W, et al. 2014. The mechanisms behind shallow failures in slopes comprised of landslide deposits[J]. Engineering Geology, 180 (S1):34~44. http://linkinghub.elsevier.com/retrieve/pii/S0013795214000908 Huang L J, Lin X S. 2002. Study on landslide related to rainfall[J]. Journal of Xiangtan Normal University(Natural Science Edition), 24 (4):55~62. http://en.cnki.com.cn/Article_en/CJFDTOTAL-XTSK200204012.htm Ju K L. 2015. Study of mechanism of rainfall-induced loose deposits landslides under prolonged drought[D]. Xi'an:Chang'an University. Li X H, Lin H, Chen X Q, et al. 2001. GIS-aided study and numerical simulation of initiation mechanism of landslide due to precipitation[J]. Journal of Engineering Geology, 9 (2):133~140. http://en.cnki.com.cn/Article_en/CJFDTOTAL-GCDZ200102005.htm Lin H Z, Yu Y Z, Li G X, et al. 2009. Influence of rainfall characteristics on soil slope failure[J]. Chinese Journal of Rock Mechanics and Engineering, 28 (1):198~204. http://en.cnki.com.cn/Article_en/CJFDTOTAL-YSLX200901030.htm Ma T H, Li C J, Lu Z M, et al. 2015. Rainfall intensity-duration thresholds for the initiation of landslides in Zhejiang Province, China[J]. Geomorphology, (245):193~206. http://www.sciencedirect.com/science/article/pii/S0169555X15002706 National geological hazard Bulletin. 2016.[EB/OL]. China geological environment information site.2016-2-6.http://www.cigem.gov.cn/auto/dbfile/file?db=1006&rid=32656&fid=efa.pdf. Sassa K, Fukuoka H, Wang F W, et al. 2007. Landslides Induced by a Combined Effect of Earthquake and Rainfall[J]. Progress in Landslide Science, 2 (14):193~207. doi: 10.1007%2F978-3-540-70965-7_14.pdf Sassa K, Nagai S, Solidum R, et al. 2010. An integrated model simulating the initiation and motion of earthquake and rain induced rapid landslides and its application to the 2006 Leyte landslide[J]. Landslides, 7 (3):219~236. doi: 10.1007/s10346-010-0230-z Su Y, Qiu J B, Lan S M, et al. 2015. Research on mechanism in rainfall landslides based on laboratory test[J]. Journal of Fuzhou University, 43 (1):118~122. http://www.scientific.net/amm.353-356.1011.pdf Terzaghi K. 1943. Theoretical Soil Mechanics[M]. New York:John Wiley & Sons Press:1~510. Vessia G, Pisano L, Vennari C, et al. 2015. Mimic expert judgment through automated procedure for selecting rainfall events responsible for shallow landslide:A statistical approach to validation[J]. Computers & Geosciences, (86):146~153. http://adsabs.harvard.edu/abs/2016CG.....86..146V Wang L Y, Wang Z. 2012. Research on Landslide Stability and Treatment in Persistent Rainfall[J]. Engineering Design of the Ground, 51 (3):151~154. http://en.cnki.com.cn/Article_en/CJFDTotal-GCJS201205047.htm Wang X T, Huang J, Wu J C. 2014. Stability evolution of debris landslides under rainfall[J]. China Earthquake Engineering Journal, 36 (1):54~60, 107. doi: 10.1002/hyp.6885/abstract Wu Y M, Lan H X, Gao X, et al. 2015. A simplified physically based coupled rainfall threshold model for triggering landslides[J]. Engineering Geology, 195 (195):63~69. http://www.irgrid.ac.cn/handle/1471x/992868 Xiao X X, Xia K Q, Xu M, et al. 2013. Stability of landslide on three-gorges dam reservior with physical simulation on model[J]. Journal of Engineering Geology, 21 (1):45~52. http://en.cnki.com.cn/Article_en/CJFDTOTAL-GCDZ201301006.htm Xu H, Zhu Y W, Cai Y Q, et al. 2005. Stability analysis of unsaturated soil slopes under rainfall infiltration[J]. Rock and Soil Mechanics, 26 (12):1957~1962. https://www.scientific.net/AMR.594-597.126 Yang J H, Dong J Y, Hao X H, et al. 2009. Effects of pore-water pressure on transition of rock-mass stress-strain curves and the mechanism of rainfall-induced landslides[J]. Journal of Engineering Geology, 17 (5):662~665. http://www.sciencedirect.com/science/article/pii/S0013795202002685 Zhang Y Y, Hu X W, Zhu H Y. 2007. Prospect of research on relationship between landslide and rainfall[J]. Journal of Natural Disasters, 16 (1):104~108. http://en.cnki.com.cn/Article_en/CJFDTOTAL-YTLX200804053.htm Zhong S. 2015. Study on The Permeability influence of Rainfall on Landslide Soil[D]. Chengdu:Chengdu University of Technology. Zhu L F, Hu W, Jia J, et al. 2013. Development features and mechanical mechanism of irrigation-induced landslides in Heifangtai, Gansu Province[J]. Geological Bulletin of China, 32 (6):840~846. http://en.cnki.com.cn/Article_en/CJFDTOTAL-ZQYD201306003.htm Zuo Z B. 2013. Investigation on rainfall-induced colluvium landslides using laboratory model tests[D]. Shanghai:Shanghai Jiaotong University. 陈洪凯, 唐红梅. 2002.散体滑坡室内启动模型试验[J].山地学报, 20 (1):113~115. http://www.cnki.com.cn/Article/CJFDTOTAL-SDYA200201019.htm 陈天健, 蔡和伦, 黄彦荣, 等. 2012.人工降雨模型试验研究降雨入渗对滑坡类型之影响[J].水土保持研究, 19 (1):254~257. http://www.cnki.com.cn/Article/CJFDTOTAL-STBY201201055.htm 程江涛, 蔡清, 陈星星. 2013.降雨作用下碎石土滑坡变形演化过程及孕灾模式研究[J].土工基础, 27 (2):118~121, 127. http://www.cnki.com.cn/Article/CJFDTOTAL-TGJC201302032.htm 黄玲娟, 林孝松. 2002.滑坡与降雨研究[J].湘潭师范学院学报(自然科学版), 24 (4):55~62. http://youxian.cnki.com.cn/yxdetail.aspx?filename=RMHH2017072100U&dbname=CAPJ2015 巨昆仑. 2015. 长期干旱背景下降雨型松散堆积体滑坡机理研究[D]. 西安: 长安大学. http://cdmd.cnki.com.cn/Article/CDMD-10710-1015802637.htm 李先华, 林珲, 陈晓清, 等. 2001. GIS支持下降雨滑坡的启动机制研究与数字仿真[J].工程地质学报, 9 (2):133~140. http://www.gcdz.org/CN/abstract/abstract9390.shtml 林鸿州, 于玉贞, 李广信, 等. 2009.降雨特性对土质边坡失稳的影响[J].岩石力学与工程学报, 28 (1):198~204. http://www.cnki.com.cn/Article/CJFDTOTAL-YSLX200901030.htm 全国地质灾害通报. 2016. [EB/OL]. 中国地质环境信息网. 2016-2-6. http://www.cigem.gov.cnautodbfile/file?db=1006&rid=32656&fid=efa.pdf. 苏燕, 邱俊炳, 兰斯梅, 等. 2015.基于室内试验的降雨型滑坡机理研究[J].福州大学学报, 43 (1):118~122. doi: 10.7631/issn.1000-2243.2015.01.0118 王良艳, 王震. 2012.持续降雨对滑坡的稳定性影响及治理措施研究[J].基础工程设计, 51 (3):151~154. http://www.cnki.com.cn/Article/CJFDTOTAL-GCJS201205047.htm 汪旭涛, 黄江, 吴建超. 2014.降雨作用下碎石土滑坡稳定性演化过程分析[J].地震工程学报, 36 (1):54~60, 106. http://www.cnki.com.cn/Article/CJFDTOTAL-ZBDZ201401010.htm 肖先煊, 夏克勤, 许模, 等. 2013.三峡库区某滑坡稳定性模型试验研究[J].工程地质学报, 21 (1):45~52. http://www.gcdz.org/CN/abstract/abstract11247.shtml 徐晗, 朱以文, 蔡元奇, 等. 2005.降雨入渗条件下非饱和土边坡稳定分析[J].岩土力学, 26 (12):1957~1962. http://www.cnki.com.cn/Article/CJFDTOTAL-YTLX200512020.htm 杨继红, 董金玉, 郝小红, 等. 2009.岩体应力-应变曲线转型的孔压效应与降雨滑坡的机制分析[J].工程地质学报, 17 (5):662~665. http://www.gcdz.org/CN/abstract/abstract8471.shtml 张友谊, 胡卸文, 朱海勇. 2007.滑坡与降雨关系研究展望[J].自然灾害学报, 16 (1):104~108. http://www.cnki.com.cn/Article/CJFDTOTAL-ZRZH200701019.htm 钟声. 2015. 降雨下滑坡土体渗透性的研究[D]. 成都: 成都理工大学. http://cdmd.cnki.com.cn/Article/CDMD-10616-1015312905.htm 朱立峰, 胡炜, 贾俊, 等. 2013.甘肃永靖黑方台地区灌溉诱发型滑坡发育特征及力学机制[J].地质通报, 32 (6):840~846. http://www.cnki.com.cn/Article/CJFDTOTAL-ZQYD201306003.htm 左自波. 2013. 降雨诱发堆积体滑坡室内模型试验研究[D]. 上海: 上海交通大学. http://cdmd.cnki.com.cn/Article/CDMD-10248-1013021207.htm -