降雨诱发浅表层黄土滑坡机理实验研究

王刚 孙萍 吴礼舟 石伦炎 祝恩珍

王刚, 孙萍, 吴礼舟, 石伦炎, 祝恩珍. 2017: 降雨诱发浅表层黄土滑坡机理实验研究. 工程地质学报, 25(5): 1252-1263. doi: 10.13544/j.cnki.jeg.2017.05.010
引用本文: 王刚, 孙萍, 吴礼舟, 石伦炎, 祝恩珍. 2017: 降雨诱发浅表层黄土滑坡机理实验研究. 工程地质学报, 25(5): 1252-1263. doi: 10.13544/j.cnki.jeg.2017.05.010
WANG Gang, SUN Ping, WU Lizhou, SHI Lunyan, ZHU Enzhen. 2017: EXPERIMENTAL STUDY ON MECHANISM OF SHALLOW LOESS LANDSLIDES INDUCED BY RAINFALL. JOURNAL OF ENGINEERING GEOLOGY, 25(5): 1252-1263. doi: 10.13544/j.cnki.jeg.2017.05.010
Citation: WANG Gang, SUN Ping, WU Lizhou, SHI Lunyan, ZHU Enzhen. 2017: EXPERIMENTAL STUDY ON MECHANISM OF SHALLOW LOESS LANDSLIDES INDUCED BY RAINFALL. JOURNAL OF ENGINEERING GEOLOGY, 25(5): 1252-1263. doi: 10.13544/j.cnki.jeg.2017.05.010

降雨诱发浅表层黄土滑坡机理实验研究

doi: 10.13544/j.cnki.jeg.2017.05.010
基金项目: 

国家自然科学基金项目 41472296

中国地质调查项目 DD20160271

详细信息
    作者简介:

    王刚(1994-), 男, 硕士生, 主要从事地质灾害研究工作.Email:wanggangcags@163.com

    通讯作者:

    孙萍(1978-), 女, 博士, 副研究员, 硕士生导师, 主要从事工程地质、地质灾害方面的研究工作.Email:sunpingcgs@163.com

  • 中图分类号: P642.22

EXPERIMENTAL STUDY ON MECHANISM OF SHALLOW LOESS LANDSLIDES INDUCED BY RAINFALL

  • 摘要: 黄土较松散,内部大孔隙和垂直节理发育,因其特殊的结构为雨水的快速入渗提供了通道。降雨型黄土浅层滑坡已造成了大量的经济损失与人员伤亡。为了有效减轻降雨诱发黄土滑坡对社会和经济的影响,开展降雨型滑坡室内实验研究,具有重大的现实意义。本文旨在研究不同降雨形式和不同坡体结构对黄土斜坡变形破坏过程影响,设计并进行了3组室内物理模型实验,分别为持续强降雨斜坡实验、持续强降雨斜坡(带垂直节理)实验和间歇性强降雨斜坡实验,且每组斜坡内埋设体积含水率传感器、基质吸力传感器和孔隙水压力传感器3种传感器记录其内部变化。通过对每一个黄土斜坡体内传感器的读数变化及实验现象进行分析,同时对不同实验条件下实验过程及结果进行对比,进而得出降雨条件下浅表层黄土滑坡的变形破坏规律,总结出该类滑坡的破坏模式及其诱发机理。实验前期,随着体积含水率不断增大,基质吸力逐渐减小至基本稳定,土体强度随之减小,实验后期上部土体饱和,斜坡产生的变形和土体排水不畅产生了超孔隙水压力,有效应力随之减小,土体强度减小至最小,导致滑坡产生。同时,坡体结构对斜坡稳定性的影响大于降雨形式的影响。
  • 图  1  实验模型箱

    Figure  1.  The test model box

    图  2  实验布置

    Figure  2.  The layout of test

    图  3  研究区内典型滑坡

    Figure  3.  A typical loess landslide at Jingyang, China

    图  4  研究区取回的黄土

    Figure  4.  Loess collected from the study area

    图  5  实验所用仪器

    a.降雨喷头;b. EC-5体积含水率传感器;c. MPS-6基质吸力传感器;d. EM50数据采集仪;e. HC-25孔隙水压力传感器;f.数据采集仪

    Figure  5.  Instruments used in experiments

    图  6  降雨强度分布

    Figure  6.  Distribution of the rainfall intensity

    图  7  均质斜坡实验剖面图

    Figure  7.  Section of homogeneous slope of continuous heavy rainfall experiment

    图  8  原型坡与模型坡

    a.斜坡原型;b.斜坡模型

    Figure  8.  The prototype slope and the model slope

    图  9  持续强降雨含垂直节理斜坡实验剖面图

    Figure  9.  Section of slope contained a vertical joint of continuous heavy rainfall experiment

    图  10  持续性强降雨均质斜坡实验过程

    a.初始状态;b.坡肩和坡脚侵蚀;c.局部破坏;d.整体破坏

    Figure  10.  Process of homogeneous slope continuous heavy rainfall experiment

    图  11  体积含水率传感器的读数变化

    a. 2、5、6、7号体积含水率传感器读数变化;b. 1、3、4号体积含水率传感器读数变化

    Figure  11.  Reading changes in volume moisture sensors

    图  12  基质吸力传感器的读数变化

    a. 2、5、6、7号基质吸力传感器读数变化;b. 1、3、4号基质吸力传感器变化

    Figure  12.  Reading changes in matric suction sensors

    图  13  孔隙水压力传感器的读数变化

    a. 2、5、6、7号孔隙水压力传感器变化;b. 1、3、4号孔隙水压力传感器变化

    Figure  13.  Reading changes in pore water pressure sensors

    图  14  持续性强降雨含垂直节理斜坡实验过程

    a.初始状态;b.湿润锋和坡肩、坡脚侵蚀;c.局部破坏;d.整体破坏

    Figure  14.  Process of slope contained a vertical joint of continuous heavy rainfall experiment

    图  15  体积含水率传感器的读数变化

    a. 2、5、7号体积含水率传感器读数变化;b. 1、3、4号体积含水率传感器读数变化

    Figure  15.  Reading changes in volume moisture sensors

    图  16  基质吸力传感器的读数变化

    a. 2、5、7号基质吸力传感器读数变化;b. 1、3、4号基质吸力传感器变化

    Figure  16.  Reading changes in matric suction sensors

    图  17  孔隙水压力传感器的读数变化

    a. 2、5、7号孔隙水压力传感器变化;b. 1、3、4号孔隙水压力传感器变化

    Figure  17.  Reading changes in pore water pressure sensors

    图  18  体积含水率传感器的读数变化

    a. 2、5、6、7号体积含水率传感器读数变化;b. 1、3、4号体积含水率传感器读数变化

    Figure  18.  Reading changes in volume moisture sensors

    图  19  基质吸力传感器的读数变化

    a. 2、5、6、7号基质吸力传感器读数变化;b. 1、3、4号基质吸力传感器变化

    Figure  19.  Reading changes in matric suction sensors

    图  20  孔隙水压力传感器的读数变化

    a. 2、5、6、7号孔隙水压力传感器变化;b. 1、3、4号孔隙水压力传感器变化

    Figure  20.  Reading changes in pore water pressure sensors

    图  21  持续强降雨均质斜坡破坏模式

    a.原始斜坡;b.坡肩侵蚀;c.坡脚侵蚀;d.后缘裂隙形成与贯通;e.滑动破坏

    Figure  21.  Failure mode of homogeneous slope induced by continuous heavy rainfall

    图  22  持续强降雨含垂直节理斜坡破坏模式

    a.原始斜坡;b.坡肩侵蚀;c.坡脚侵蚀;d.后缘节理扩展;e.滑动破坏

    Figure  22.  Failure mode of slope contained a vertical joint induced by continuous heavy rainfall

    表  1  黄土的物理参数

    Table  1.   Physical parameters of the loess

    干重度
    /kN·m-3
    天然
    重度
    /kN·m-3
    饱和
    重度
    /kN·m-3
    初始体积
    含水率
    /%
    饱和体积
    含水率
    /%
    竖向
    渗透系数
    /m·s-1
    13.2 14.7 23.2 10 43 2.23×10-6
    下载: 导出CSV

    表  2  降雨实验方案

    Table  2.   Scheme of rainfall test

    实验
    类型
    降雨强度
    /mm·h-1
    降雨
    时间
    降雨
    类型
    斜坡
    类型
    持续强降雨 70 直至斜坡破坏 均匀型 均质斜坡
    间歇性
    强降雨
    70 每间隔24h
    降雨1h,直至破坏
    间歇型 均质斜坡
    持续强降雨 70 直至斜坡破坏 均匀型 带垂直
    节理斜坡
    下载: 导出CSV

    表  3  降雨滑坡发展过程和滑动时间

    Table  3.   Development and sliding time of rainfall-induced landslides

    实验类型 斜坡特征 现象描述 累计降雨量/mm 滑动时间/min
    强降雨 均质坡 ① 前缘坡脚侵蚀。② 后缘轻微沉降,距离坡肩约5cm处产生裂隙。③ 破坏较快,滑动距离近,滑面最浅。 373.3 320
    强降雨 含垂直
    节理斜坡
    ① 坡脚冲蚀严重,形成临空面。② 裂隙处充满水,有轻微塌陷,裂隙向下扩展,湿润锋在裂隙处呈弧形。③ 破坏最快,滑动距离最小,滑动面最深。 318.5 273
    间歇性
    强降雨
    均质坡 ① 坡肩侵蚀,坡脚垮塌。② 降雨后一天内后缘产生许多微小裂隙,距离坡肩9cm,降雨时雨水侵入。③ 所需时间最长,滑动距离短。 415.3 7263
    (5天1小时3分)
    下载: 导出CSV
  • Ali A, Huang J S, Lyamin A V, et al. 2014. Boundary effects of rainfall-induced landslides[J]. Computer sand Geotechnics, (61):341~354. http://research-repository.uwa.edu.au/en/publications/boundary-effects-of-rainfallinduced-landslides(5317849b-ee89-4485-914e-a7ca45ace626)/export.html
    Alimohammadlou Y, Najafi A, Gokceoglu C. 2014. Estimation of rainfall-induced landslides using ANN and fuzzy clustering methods:A case study in Saeen Slope, Azerbaijan province, Iran[J]. Catena, 120 (1):149~162. https://benthamopen.com/FULLTEXT/TOCIEJ-11-22
    Chen H K, Tang H M. 2002. Research on start-up of loose landslide in lab[J]. Journal of Mountain Science, 20 (1):113~115. http://en.cnki.com.cn/Article_en/CJFDTOTAL-SDYA200201019.htm
    Chen S C, Chou H T, Chen S C, et al. 2014. Characteristics of rainfall-induced landslides in Miocene formations:A case study of the Shenmu watershed, Central Taiwan[J]. Engineering Geology, 169 (2):133~146. http://linkinghub.elsevier.com/retrieve/pii/S0013795213003384
    Chen T J, Cai H L, Huang Y R, et al. 2012. Slope failure mode related to soil infiltration-laboratory rainfall model test.[J]. Research of Soil and Water Conservation, 19 (1):254~257. http://en.cnki.com.cn/Article_en/CJFDTOTAL-STBY201201055.htm
    Cheng J T, Cai Q, Chen X X. 2013. Development of gravelly soil landslides induced by rainfalls[J]. Soil Engineering and Foundation, 27 (2):118~121, 127.
    Cui P, Guo C X, Zhou J W, et al. 2014. The mechanisms behind shallow failures in slopes comprised of landslide deposits[J]. Engineering Geology, 180 (S1):34~44. http://linkinghub.elsevier.com/retrieve/pii/S0013795214000908
    Huang L J, Lin X S. 2002. Study on landslide related to rainfall[J]. Journal of Xiangtan Normal University(Natural Science Edition), 24 (4):55~62. http://en.cnki.com.cn/Article_en/CJFDTOTAL-XTSK200204012.htm
    Ju K L. 2015. Study of mechanism of rainfall-induced loose deposits landslides under prolonged drought[D]. Xi'an:Chang'an University.
    Li X H, Lin H, Chen X Q, et al. 2001. GIS-aided study and numerical simulation of initiation mechanism of landslide due to precipitation[J]. Journal of Engineering Geology, 9 (2):133~140. http://en.cnki.com.cn/Article_en/CJFDTOTAL-GCDZ200102005.htm
    Lin H Z, Yu Y Z, Li G X, et al. 2009. Influence of rainfall characteristics on soil slope failure[J]. Chinese Journal of Rock Mechanics and Engineering, 28 (1):198~204. http://en.cnki.com.cn/Article_en/CJFDTOTAL-YSLX200901030.htm
    Ma T H, Li C J, Lu Z M, et al. 2015. Rainfall intensity-duration thresholds for the initiation of landslides in Zhejiang Province, China[J]. Geomorphology, (245):193~206. http://www.sciencedirect.com/science/article/pii/S0169555X15002706
    National geological hazard Bulletin. 2016.[EB/OL]. China geological environment information site.2016-2-6.http://www.cigem.gov.cn/auto/dbfile/file?db=1006&rid=32656&fid=efa.pdf.
    Sassa K, Fukuoka H, Wang F W, et al. 2007. Landslides Induced by a Combined Effect of Earthquake and Rainfall[J]. Progress in Landslide Science, 2 (14):193~207. doi: 10.1007%2F978-3-540-70965-7_14.pdf
    Sassa K, Nagai S, Solidum R, et al. 2010. An integrated model simulating the initiation and motion of earthquake and rain induced rapid landslides and its application to the 2006 Leyte landslide[J]. Landslides, 7 (3):219~236. doi: 10.1007/s10346-010-0230-z
    Su Y, Qiu J B, Lan S M, et al. 2015. Research on mechanism in rainfall landslides based on laboratory test[J]. Journal of Fuzhou University, 43 (1):118~122. http://www.scientific.net/amm.353-356.1011.pdf
    Terzaghi K. 1943. Theoretical Soil Mechanics[M]. New York:John Wiley & Sons Press:1~510.
    Vessia G, Pisano L, Vennari C, et al. 2015. Mimic expert judgment through automated procedure for selecting rainfall events responsible for shallow landslide:A statistical approach to validation[J]. Computers & Geosciences, (86):146~153. http://adsabs.harvard.edu/abs/2016CG.....86..146V
    Wang L Y, Wang Z. 2012. Research on Landslide Stability and Treatment in Persistent Rainfall[J]. Engineering Design of the Ground, 51 (3):151~154. http://en.cnki.com.cn/Article_en/CJFDTotal-GCJS201205047.htm
    Wang X T, Huang J, Wu J C. 2014. Stability evolution of debris landslides under rainfall[J]. China Earthquake Engineering Journal, 36 (1):54~60, 107. doi: 10.1002/hyp.6885/abstract
    Wu Y M, Lan H X, Gao X, et al. 2015. A simplified physically based coupled rainfall threshold model for triggering landslides[J]. Engineering Geology, 195 (195):63~69. http://www.irgrid.ac.cn/handle/1471x/992868
    Xiao X X, Xia K Q, Xu M, et al. 2013. Stability of landslide on three-gorges dam reservior with physical simulation on model[J]. Journal of Engineering Geology, 21 (1):45~52. http://en.cnki.com.cn/Article_en/CJFDTOTAL-GCDZ201301006.htm
    Xu H, Zhu Y W, Cai Y Q, et al. 2005. Stability analysis of unsaturated soil slopes under rainfall infiltration[J]. Rock and Soil Mechanics, 26 (12):1957~1962. https://www.scientific.net/AMR.594-597.126
    Yang J H, Dong J Y, Hao X H, et al. 2009. Effects of pore-water pressure on transition of rock-mass stress-strain curves and the mechanism of rainfall-induced landslides[J]. Journal of Engineering Geology, 17 (5):662~665. http://www.sciencedirect.com/science/article/pii/S0013795202002685
    Zhang Y Y, Hu X W, Zhu H Y. 2007. Prospect of research on relationship between landslide and rainfall[J]. Journal of Natural Disasters, 16 (1):104~108. http://en.cnki.com.cn/Article_en/CJFDTOTAL-YTLX200804053.htm
    Zhong S. 2015. Study on The Permeability influence of Rainfall on Landslide Soil[D]. Chengdu:Chengdu University of Technology.
    Zhu L F, Hu W, Jia J, et al. 2013. Development features and mechanical mechanism of irrigation-induced landslides in Heifangtai, Gansu Province[J]. Geological Bulletin of China, 32 (6):840~846. http://en.cnki.com.cn/Article_en/CJFDTOTAL-ZQYD201306003.htm
    Zuo Z B. 2013. Investigation on rainfall-induced colluvium landslides using laboratory model tests[D]. Shanghai:Shanghai Jiaotong University.
    陈洪凯, 唐红梅. 2002.散体滑坡室内启动模型试验[J].山地学报, 20 (1):113~115. http://www.cnki.com.cn/Article/CJFDTOTAL-SDYA200201019.htm
    陈天健, 蔡和伦, 黄彦荣, 等. 2012.人工降雨模型试验研究降雨入渗对滑坡类型之影响[J].水土保持研究, 19 (1):254~257. http://www.cnki.com.cn/Article/CJFDTOTAL-STBY201201055.htm
    程江涛, 蔡清, 陈星星. 2013.降雨作用下碎石土滑坡变形演化过程及孕灾模式研究[J].土工基础, 27 (2):118~121, 127. http://www.cnki.com.cn/Article/CJFDTOTAL-TGJC201302032.htm
    黄玲娟, 林孝松. 2002.滑坡与降雨研究[J].湘潭师范学院学报(自然科学版), 24 (4):55~62. http://youxian.cnki.com.cn/yxdetail.aspx?filename=RMHH2017072100U&dbname=CAPJ2015
    巨昆仑. 2015. 长期干旱背景下降雨型松散堆积体滑坡机理研究[D]. 西安: 长安大学. http://cdmd.cnki.com.cn/Article/CDMD-10710-1015802637.htm
    李先华, 林珲, 陈晓清, 等. 2001. GIS支持下降雨滑坡的启动机制研究与数字仿真[J].工程地质学报, 9 (2):133~140. http://www.gcdz.org/CN/abstract/abstract9390.shtml
    林鸿州, 于玉贞, 李广信, 等. 2009.降雨特性对土质边坡失稳的影响[J].岩石力学与工程学报, 28 (1):198~204. http://www.cnki.com.cn/Article/CJFDTOTAL-YSLX200901030.htm
    全国地质灾害通报. 2016. [EB/OL]. 中国地质环境信息网. 2016-2-6. http://www.cigem.gov.cnautodbfile/file?db=1006&rid=32656&fid=efa.pdf.
    苏燕, 邱俊炳, 兰斯梅, 等. 2015.基于室内试验的降雨型滑坡机理研究[J].福州大学学报, 43 (1):118~122. doi: 10.7631/issn.1000-2243.2015.01.0118
    王良艳, 王震. 2012.持续降雨对滑坡的稳定性影响及治理措施研究[J].基础工程设计, 51 (3):151~154. http://www.cnki.com.cn/Article/CJFDTOTAL-GCJS201205047.htm
    汪旭涛, 黄江, 吴建超. 2014.降雨作用下碎石土滑坡稳定性演化过程分析[J].地震工程学报, 36 (1):54~60, 106. http://www.cnki.com.cn/Article/CJFDTOTAL-ZBDZ201401010.htm
    肖先煊, 夏克勤, 许模, 等. 2013.三峡库区某滑坡稳定性模型试验研究[J].工程地质学报, 21 (1):45~52. http://www.gcdz.org/CN/abstract/abstract11247.shtml
    徐晗, 朱以文, 蔡元奇, 等. 2005.降雨入渗条件下非饱和土边坡稳定分析[J].岩土力学, 26 (12):1957~1962. http://www.cnki.com.cn/Article/CJFDTOTAL-YTLX200512020.htm
    杨继红, 董金玉, 郝小红, 等. 2009.岩体应力-应变曲线转型的孔压效应与降雨滑坡的机制分析[J].工程地质学报, 17 (5):662~665. http://www.gcdz.org/CN/abstract/abstract8471.shtml
    张友谊, 胡卸文, 朱海勇. 2007.滑坡与降雨关系研究展望[J].自然灾害学报, 16 (1):104~108. http://www.cnki.com.cn/Article/CJFDTOTAL-ZRZH200701019.htm
    钟声. 2015. 降雨下滑坡土体渗透性的研究[D]. 成都: 成都理工大学. http://cdmd.cnki.com.cn/Article/CDMD-10616-1015312905.htm
    朱立峰, 胡炜, 贾俊, 等. 2013.甘肃永靖黑方台地区灌溉诱发型滑坡发育特征及力学机制[J].地质通报, 32 (6):840~846. http://www.cnki.com.cn/Article/CJFDTOTAL-ZQYD201306003.htm
    左自波. 2013. 降雨诱发堆积体滑坡室内模型试验研究[D]. 上海: 上海交通大学. http://cdmd.cnki.com.cn/Article/CDMD-10248-1013021207.htm
  • 加载中
图(22) / 表(3)
计量
  • 文章访问数:  2476
  • HTML全文浏览量:  553
  • PDF下载量:  590
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-06-13
  • 修回日期:  2017-07-03
  • 刊出日期:  2017-10-25

目录

    /

    返回文章
    返回