山区输变电工程崩塌(滚石)灾害识别与预测方法

王学良 刘海洋 王瑞琪 王彦兵 涂新斌

王学良, 刘海洋, 王瑞琪, 王彦兵, 涂新斌. 2018: 山区输变电工程崩塌(滚石)灾害识别与预测方法. 工程地质学报, 26(1): 172-178. doi: 10.13544/j.cnki.jeg.2018.01.019
引用本文: 王学良, 刘海洋, 王瑞琪, 王彦兵, 涂新斌. 2018: 山区输变电工程崩塌(滚石)灾害识别与预测方法. 工程地质学报, 26(1): 172-178. doi: 10.13544/j.cnki.jeg.2018.01.019
WANG Xueliang, LIU Haiyang, WANG Ruiqi, WANG Yanbing, TU Xinbin. 2018: THE APPROACH OF ROCK COLLAPSE(ROCKFALL) IDENTIFICATION AND PREDICTION FOR POWER TRANSMISSION AND TRANSFORMA-TION PROJECT IN MOUNTAIN AREA. JOURNAL OF ENGINEERING GEOLOGY, 26(1): 172-178. doi: 10.13544/j.cnki.jeg.2018.01.019
Citation: WANG Xueliang, LIU Haiyang, WANG Ruiqi, WANG Yanbing, TU Xinbin. 2018: THE APPROACH OF ROCK COLLAPSE(ROCKFALL) IDENTIFICATION AND PREDICTION FOR POWER TRANSMISSION AND TRANSFORMA-TION PROJECT IN MOUNTAIN AREA. JOURNAL OF ENGINEERING GEOLOGY, 26(1): 172-178. doi: 10.13544/j.cnki.jeg.2018.01.019

山区输变电工程崩塌(滚石)灾害识别与预测方法

doi: 10.13544/j.cnki.jeg.2018.01.019
基金项目: 

国家自然科学青年基金 41402285

国家电网公司科技项目 SgxzzzlwzhbGCJS1700092

国网经济技术研究院科技项目 ZZKJ-2017-09

详细信息
    作者简介:

    王学良(1984-), 男, 博士, 副研究员, 主要从事地质灾害等工程地质方面的研究工作.Email:wangxueliang@mail.iggcas.ac.cn

  • 中图分类号: P642.21

THE APPROACH OF ROCK COLLAPSE(ROCKFALL) IDENTIFICATION AND PREDICTION FOR POWER TRANSMISSION AND TRANSFORMA-TION PROJECT IN MOUNTAIN AREA

  • 摘要: 山区输变电工程崩塌随着国家“一带一路”和“全球能源互联网”战略的构建和实施,山区复杂地质环境条件下的输变电工程建设越来越多。然而,现阶段对于输变电工程崩塌(滚石)灾害识别、预测和评价方法等方面的研究相对较少,难以有效解决山区崩塌(滚石)灾害频发与输变电工程安全建设、运营之间不断增长的矛盾。鉴于此,作者借助航空遥感、无人机航测、岩体结构分析工具、崩塌(滚石)运动数值模拟软件等新技术方法等,对山区输变电工程中崩塌(滚石)灾害识别与预测方法等开展了相关研究。提出:(1)基于区域工程地质分区-区段遥感分析-山体无人机航拍-岩体结构特征分析的思路,实现对长距离、大区域山区输变电工程的崩塌(滚石)危岩体快速识别和分析;(2)利用三维崩塌(运动)模拟方法快速识别崩塌(滚石)在杆塔(变电站)范围的到达情况,然后再利用多种方法对比确定能到达杆塔(变电站)范围内崩塌(滚石)的冲击特征;(3)山区输变电工程崩塌(滚石)灾害风险计算方法。
  • 图  1  某高陡斜坡山体点云数据

    Figure  1.  Point cloud data of one high and steep slope

    图  2  河北承德隆化县韩麻营镇某输电线路崩塌(滚石)危岩体

    Figure  2.  Power transmission line rockfall in Hanmaying town Longhua County, Hebei province

    图  3  拟建杆塔与危岩区分布的遥感影像数据

    Figure  3.  The positions of tower planed and potential rockfall blocks on remote sensing image

    图  4  崩塌(滚石)三维运动快速识别结果

    Figure  4.  Quick identification of rockfall by three-dimensional numerical simulation

    图  5  承德隆化县韩麻营镇输电线路崩塌(滚石)运动特征

    a.危岩区圈定; b.崩塌三维数值模拟结果; c.崩塌二维数值模拟结果-运动路径; d.崩塌二维数值模拟结果-运动速度、能量等

    Figure  5.  Movement feature of rockfall along power transmission line in Hanmaying town Longhua County, Hebei province

    表  1  崩塌(滚石)失稳运动的二维计算参数

    Table  1.   The parameter setting of 2-D numerical simulation for rockfall

    法向恢复系数 变异系数 切向恢复系数 变异系数 摩擦角/(°) 变异系数
    坡段1砂岩岩体 0.53 0.04 0.9 0.04 30 2
    坡段2植被发育 0.3 0.04 0.8 0.04 30 2
    崩落体质量/kg 崩落次数 初始速度/m·s-1
    11500 1000 0
    下载: 导出CSV
  • Azzoni A, Freitas M H D. 1995. Experimentally gained parameters, decisive for rock fall analysis[J]. Rock Mechanics & Rock Engineering, 28(2):111-124. doi: 10.1007/BF01020064.pdf
    Cancelli A, Crosta G. 1993. Hazard and risk assessment in rockfall prone areas[C]//Risk and Reliability in Ground Engineering. London: Thomas Telford.
    Crosta G B, Agliardi F. 2004. Pressure stimulated currents in rocks and their correlation with mechanical properties[J]. Natural Hazards & Earth System Sciences, 4(4):563-567. https://core.ac.uk/download/pdf/52755366.pdf
    Fell R, Corominas J, Bonnard C, et al. 2008. Guidelines for landslide susceptibility, hazard and risk zoning for land-use planning[J]. Engineering Geology, 102(3-4):85-98. doi: 10.1016/j.enggeo.2008.03.022
    Frattini P, Crosta G, Carrara A, et al. 2008. Assessment of rockfall susceptibility by integrating statistical and physically-based approaches[J]. Geomorphology, 94(3):419-437. https://www.sciencedirect.com/science/article/pii/S0169555X07002760
    Gu D Z. 1979. Mechanical basement of rock engineering geology[M]. Beijing:Science Press.
    Han W J, Lei Y H, Zhou X W, et al. 2010. Application of unmanned aerial vehicle survey in power grid engineering construction[J]. Electric Power Survey & Design, (3):62-67.
    Lan H X, Xiao R H, Yan F Z, et al. 2016. The geological engineering conditions analysis for Sichuan-tibet interconnection project[J]. Journal Engineering Geology, 24(S1):375-385.
    Li B Q, Wang Q, Wang B H, et al. 2010. Applying unmanned autonomous helicopter to transmission line inspection[J]. Shangdong Electric Power, (1):1-4. http://en.cnki.com.cn/Article_en/CJFDTOTAL-SDDJ201205016.htm
    Li H S, Xu X Y, Zhang L. 2017. Operating mechanism establishment of the global energy interconnection under "the Belt and Road Initiative" situation[J]. Journal of Shandong University(Engineering Science), 47(6):134-142. http://en.cnki.com.cn/Journal_en/C-C000-SDGY-2017-06.htm
    Liu H Y, Wang X L, Li L H, et al. 2017. Application of uav aerial photogrammetry for rockfall disaster survey[J]. Journal of Engineering Geology, 25(Z1):82-87. https://www.researchgate.net/profile/Massimo_Ramondini/publication/258514250_Use_of_unmanned_aerial_vehicles_UAVs_for_photogrammetric_surveys_in_rockfall_instability_studies/links/004635375d376abb66000000.pdf
    Sun G Z. 1983. Rock mechanics basement[M]. Beijing:Science Press.
    Sun J J, Wang X L, Chen Z G, et al. 2017. Characteristics of rock mass structure and prediction of rock mass behavior of high-steep slope[J]. Journal of Engineering Geology, 25(S1):407-414. https://www.sciencedirect.com/science/article/pii/S2095268615001937
    Wang X L, Frattini P, Crosta G B, et al. 2014. Uncertainty assessment in quantitative rockfall risk assessment[J]. Landslides, 11(4):711-722. doi: 10.1007/s10346-013-0447-8
    Wang X L, Zhang L Q, Yang Z Y. 2015. Approaches for rockfall run-out calculation and uncer-tainty in rockfall study[J]. Journal of Engineering Geology, 23(S1):166-172. http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.611.896&rep=rep1&type=pdf
    谷德振. 1979.岩体工程地质力学基础[M].北京:科学出版社.
    韩文军, 雷远华, 周学文. 2010.无人机航测技术及其在电网工程建设中的应用探讨[J].电力勘测设计, (3):62-67. http://www.cnki.com.cn/Article/CJFDTOTAL-TXWL201521073.htm
    兰恒星, 肖锐铧, 严福章. 2016.川藏联网工程地质条件分析[J].工程地质学报, 24(S1):375-385. http://www.gcdz.org/CN/abstract/abstract12115.shtml
    李海石, 徐向艺, 张磊. 2017. "一带一路"背景下全球能源互联网运行机制构建[J].山东大学学报(工学版), 47(6):134-142. doi: 10.6040/j.issn.1672-3961.0.2017.539
    厉秉强, 王骞, 王滨海, 等. 2010.利用无人直升机巡检输电线路[J].山东电力技术, (1):1-4. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=sddljs201001001
    刘海洋, 王学良, 李丽慧, 等. 2017.无人机航空摄影测量技术在崩塌灾害调查中的应用[J].工程地质学报, 25 (Z1):82-87. http://www.gcdz.org/CN/abstract/abstract12591.shtml
    孙广忠. 1983.岩体力学基础[M].北京:科学出版社.
    孙娟娟, 王学良, 陈子干, 等. 2017.高陡斜坡危石的岩体结构特征识别及滚石运动特征预测[J].工程地质学报, 25(S1):407-414. http://www.gcdz.org/CN/abstract/abstract12517.shtml
    王学良, 张路青, 杨志法. 2015.滚石运动的计算方法及其研究中的不确定性[J].工程地质学报, 23(S1):166-172. http://www.gcdz.org/CN/abstract/abstract11779.shtml
  • 加载中
图(5) / 表(1)
计量
  • 文章访问数:  2366
  • HTML全文浏览量:  458
  • PDF下载量:  337
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-11-06
  • 录用日期:  2018-01-10
  • 刊出日期:  2018-02-25

目录

    /

    返回文章
    返回