刘蕾, 陈亮, 崔振华, 李慧. 2014: 逆层岩质边坡地震动力破坏过程FLAC/PFC耦合数值模拟分析. 工程地质学报, 22(6): 1257-1262. DOI: 10.13544/j.cnki.jeg.2014.06.033
    引用本文: 刘蕾, 陈亮, 崔振华, 李慧. 2014: 逆层岩质边坡地震动力破坏过程FLAC/PFC耦合数值模拟分析. 工程地质学报, 22(6): 1257-1262. DOI: 10.13544/j.cnki.jeg.2014.06.033
    LIU Lei, CHEN Liang, CUI Zhenhua, LI Hui. 2014: FLAC/PFC2D HYBRID SIMULATION FOR SEISMICALLY INDUCED FAILURE PROCESS OF TOPPLING ROCK SLOPE. JOURNAL OF ENGINEERING GEOLOGY, 22(6): 1257-1262. DOI: 10.13544/j.cnki.jeg.2014.06.033
    Citation: LIU Lei, CHEN Liang, CUI Zhenhua, LI Hui. 2014: FLAC/PFC2D HYBRID SIMULATION FOR SEISMICALLY INDUCED FAILURE PROCESS OF TOPPLING ROCK SLOPE. JOURNAL OF ENGINEERING GEOLOGY, 22(6): 1257-1262. DOI: 10.13544/j.cnki.jeg.2014.06.033

    逆层岩质边坡地震动力破坏过程FLAC/PFC耦合数值模拟分析

    FLAC/PFC2D HYBRID SIMULATION FOR SEISMICALLY INDUCED FAILURE PROCESS OF TOPPLING ROCK SLOPE

    • 摘要: 建立含有非贯通层面和正交次级节理的逆层岩质边坡FLAC/PFC2D耦合计算模型,进行地震动力破坏过程模拟试验,研究了逆层岩质边坡地震动力破坏机理。试验结果证明,在地震动力破坏过程中,边坡内部层面主要产生剪切破坏,少量张拉破坏集中于逆层边坡顶部位置并且总是发生在坡体已经产生动力失稳之后,因此层面的抗拉强度并不影响逆层边坡的地震动力稳定性。坡顶正交次级节理只能产生张拉破坏,形成宏观的岩层倾倒趋势,而坡底的正交次级节理既会产生张拉破坏,也会产生剪切破坏,破坏面滑动趋势明显。动力响应坡顶放大效应和破坏面发育位置深度导致坡顶岩体的张拉倾倒早于坡底岩体的剪切滑动,与逆层边坡静力倾倒破坏顺序相反。

       

      Abstract: This paper presents FLAC/PFC2D hybrid numerical models for a typical toppling rock slope with intermittent bedding planes and orthogonal secondary rock joints inside. The seismically induced failure processes of the slope are simulated and analysed. The simulation results reveal that the rock bedding plane generally fails in shear during the dynamic failure process. Very few tensile failure of the bedding plane can occur on the top of the slope. But the tensile failure always appears after the collapse of the whole slope. Therefore the tensile strength of the beddings cannot serve to affect the actual dynamic stability of the slope in a whole. Secondary rock joints on the top of slope can only fail in tension, resulting rock layer toppling. The joints on the bottom of the slope can fail both in tension and shear, inducing shearing displacement along the penetrating joint surfaces. Moreover, the joint failure at the top of slope always occurs before the joint failure at the bottom, which is completely opposite to the classic failure sequence of toppling rock slope on static condition. This difference may be due to the dynamic amplification effect on the crest of slope and the difference on position and depth for failing secondary rock joints on the top and on the bottom.

       

    /

    返回文章
    返回