成荣鹏, 来向华, 韦雁机, 胡涛骏, 黄潘阳. 2018: 储气砂中浅层气溢出过程数值模拟研究. 工程地质学报, 26(3): 767-775. DOI: 10.13544/j.cnki.jeg.2017-204
    引用本文: 成荣鹏, 来向华, 韦雁机, 胡涛骏, 黄潘阳. 2018: 储气砂中浅层气溢出过程数值模拟研究. 工程地质学报, 26(3): 767-775. DOI: 10.13544/j.cnki.jeg.2017-204
    CHENG Rongpeng, LAI Xianghua, WEI Yanji, HU Taojun, HUANG Panyang. 2018: NUMERICAL SIMULATION OF THE FORMATION OF SHALLOW GAS SPILLING IN SANDS. JOURNAL OF ENGINEERING GEOLOGY, 26(3): 767-775. DOI: 10.13544/j.cnki.jeg.2017-204
    Citation: CHENG Rongpeng, LAI Xianghua, WEI Yanji, HU Taojun, HUANG Panyang. 2018: NUMERICAL SIMULATION OF THE FORMATION OF SHALLOW GAS SPILLING IN SANDS. JOURNAL OF ENGINEERING GEOLOGY, 26(3): 767-775. DOI: 10.13544/j.cnki.jeg.2017-204

    储气砂中浅层气溢出过程数值模拟研究

    NUMERICAL SIMULATION OF THE FORMATION OF SHALLOW GAS SPILLING IN SANDS

    • 摘要: 基于A.Nermoen的物理实验,文章进行了浅层气溢出过程数值模拟,区别于以往常用的欧拉-欧拉方法,文章采用了基于欧拉-拉格朗日方法的新型的离散粒子模拟方法MP-PIC(multiphase particle-in-cell)模型。揭示超压气体释放的机制,以及浅层气溢出过程中速度、压力的变化情况和变化规律。模拟得到的颗粒流化现象以及气泡的产生、运动和溢出现象与试验现象相一致,数模计算结果与实验资料两者相关度为0.94,相关性较好。临界流化速度和压力与土层的高度呈正相关,临界流化压力与实验结果较为接近,但由于马格努斯力(magnus)等作用力未考虑,导致临界流化速度相比于实验偏低。该模型方法能处理任意尺寸分布的颗粒,适用庞大的颗粒量,紧密耦合气固间相互作用,适用性好,准确性高,为数值模拟提供了便利。

       

      Abstract: Based on the A. Nermoen's physics experiment, this article simulates the formation of shallow gas spilling. Different from the Euler-Euler method, this article uses a new discrete particle simulation method MP-PIC model that is based on Euler-Lagrange method. This article revealed the mechanism of overpressure gas release and the change and regular of velocity and pressure in the formation process of the shallow gas. The simulation results show that the fluidization of particles and the formation, movement and spray of bubbles are consistent with the experimental phenomenon. The correlation coefficient between the calculated results and the experimental data is 0.94, which is a good correlation. The critical fluidization velocity and pressure are positively correlated with the height of soil. The critical fluidization pressure is close to the experimental results. However, because of some other external forces which are not considered, such as the force of Magnus force, the critical fluidization velocity is lower than that of the experiment. The model can deal with particles of arbitrary size, which is suitable for enormous particle quantity and tightly coupling the interaction between liquid and solid. Good applicability and High accuracy of this model provide convenience for numerical simulation.

       

    /

    返回文章
    返回