陈昌富, 朱世民, 毛凤山, 张根宝. 2019: 红黏土固结-蠕变特性及其耦合模型. 工程地质学报, 27(4): 723-728. DOI: 10.13544/j.cnki.jeg.2018-330
    引用本文: 陈昌富, 朱世民, 毛凤山, 张根宝. 2019: 红黏土固结-蠕变特性及其耦合模型. 工程地质学报, 27(4): 723-728. DOI: 10.13544/j.cnki.jeg.2018-330
    CHEN Changfu, ZHU Shimin, MAO Fengshan, ZHANG Genbao. 2019: CHARACTERIZATION AND MODELLING OF COUPLED CONSOLIDATION-CREEP BEHAVIOR OF RED CLAY. JOURNAL OF ENGINEERING GEOLOGY, 27(4): 723-728. DOI: 10.13544/j.cnki.jeg.2018-330
    Citation: CHEN Changfu, ZHU Shimin, MAO Fengshan, ZHANG Genbao. 2019: CHARACTERIZATION AND MODELLING OF COUPLED CONSOLIDATION-CREEP BEHAVIOR OF RED CLAY. JOURNAL OF ENGINEERING GEOLOGY, 27(4): 723-728. DOI: 10.13544/j.cnki.jeg.2018-330

    红黏土固结-蠕变特性及其耦合模型

    CHARACTERIZATION AND MODELLING OF COUPLED CONSOLIDATION-CREEP BEHAVIOR OF RED CLAY

    • 摘要: 红黏土的蠕变特性直接影响到红土边坡的长期稳定性。为了深入研究红黏土的蠕变特性,设计改制了一套基于杠杆加载原理的三轴蠕变试验装置。采用分级加载,对红黏土试样进行室内排水三轴蠕变试验,获得了不同偏应力水平下的蠕变全过程曲线,采用"陈氏加载法"将分级加载曲线转化成分别加载曲线,并利用等时曲线法得出红黏土蠕变破坏阈值。将固结理论与Kelvin蠕变模型相结合以描述红黏土在偏应力作用下的固结-蠕变特性,然后利用一部分偏应力水平下的蠕变试验结果进行回归建模以确定各模型参数,并以此建立出考虑固结-蠕变耦合作用的红黏土元件蠕变模型,最后采用所建蠕变模型对另一部分蠕变试验结果进行预测,结果表明:本文模型无论是拟合还是预测的精准度都很高。

       

      Abstract: The long-term stability of slope in red clay region directly depends on the creep behavior of red clay. A specially designed tri-axial creep testing setup based on leverage loading method is adopted to investigate the creep behavior for red clay. Time history of axial displacement of specimen under drained condition is monitored subjected to stepwise axial load and constant confining stress. The Chen's method is used to transform the axial displacement time history equivalently into a cluster of creep curves for different loaded axial stresses. Furthermore, a threshold value of axial stress corresponding to the creep failure of red clay specimen is determined by using isochronal curve method. A novel element creep model incorporating soil consolidation theory and Kelvin rheological model is established to characterize the coupled consolidation-creep behavior of red clay. The model parameters of this element creep model are correlated reasonably with loaded axial stress by fitting on tested creep curves under part of adopted axial loads. The above correlations are furtherly incorporated into the creep model to predict the creep response of axial displacement of specimens under remaining axial stresses. The predicted axial displacement creep curves are compared with the measured data in tests. The good agreement found in comparison validates the effectiveness and accuracy of the presented element creep model.

       

    /

    返回文章
    返回