邓小龙, 孙光吉, 俞永华, 等. 2021. 滇东北深埋特长公路隧道工程区地应力场研究[J]. 工程地质学报, 29(3): 862-870. doi: 10.13544/j.cnki.jeg.2020-100.
    引用本文: 邓小龙, 孙光吉, 俞永华, 等. 2021. 滇东北深埋特长公路隧道工程区地应力场研究[J]. 工程地质学报, 29(3): 862-870. doi: 10.13544/j.cnki.jeg.2020-100.
    Deng Xiaolong, Sun Guangji, Yu Yonghua, et al. 2021. In-situ stress analysis of deep-buried and extra-long highway tunnel in northeast Yunnan region[J]. Journal of Engineering Geology, 29(3): 862-870. doi: 10.13544/j.cnki.jeg.2020-100.
    Citation: Deng Xiaolong, Sun Guangji, Yu Yonghua, et al. 2021. In-situ stress analysis of deep-buried and extra-long highway tunnel in northeast Yunnan region[J]. Journal of Engineering Geology, 29(3): 862-870. doi: 10.13544/j.cnki.jeg.2020-100.

    滇东北深埋特长公路隧道工程区地应力场研究

    IN-SITU STRESS ANALYSIS OF DEEP-BURIED AND EXTRA-LONG HIGHWAY TUNNEL IN NORTHEAST YUNNAN REGION

    • 摘要: 深埋特长隧道工程区地应力场的预测一直是工程技术人员面临的难题,而工程地质综合分析法则可为工程区地应力场的分析提供较为全面准确的结论。因此,本文以滇东北典型深埋特长隧道——乐红隧道为例,采用综合分析法来研究工程区的地应力场特征。首先基于中国大陆应力分区,利用Anderson断层力学理论、震源机制解及实测地应力统计数据来获取研究区主应力方向。其次,基于工程地质勘察成果,利用Hoek-Brown强度准则对工程区的岩体强度进行了初步估算。在此基础上,利用修正Sheorey模型对工程区地应力量值水平进行了预测。分析结果表明,工程区以先进构造应力为主导。其中:水平最大主应力优势方位为N20°~60°W,应力场方向较为稳定。地应力量值水平预测结果表明,工程区在埋深500 m左右时,最大、最小水平主应力量值范围分别为11.2~20.5 MPa、6.6~12.2 MPa;埋深在1000 m左右时的最大、最小水平主应力量值范围分别为25.9~28.2 MPa、15.4~17.1 MPa。工程区在埋深超过500 m时的高地应力情况下,可能存在岩爆风险,而围岩大变形的问题几乎不存在。综合分析法的预测结果与现场实测数据较为吻合,表明该方法在线状公路隧道地应力状态的预测分析中,具有良好的应用效果。

       

      Abstract: Prediction of in-situ stress for deep-buried and extra-long tunnel area is always a difficulty encountered by many engineers,while the comprehensive engineering geological analysis presents a unique advantage in evaluating geostress regime of complex engineering projects. Therefore,exemplified by a typical deep-buried and extra-long highway tunnel in northeast Yunnan region,this solution is illustrated and validated. Firstly,based on the tectonic stress field zoning,stress orientations for the targeted area is obtained by analyzing Anderson's theory of faulting mechanics,focal mechanism and statistics of in-situ stress measurement. Secondly,the strength of rock masses for the targeted area is estimated by using Hoek-Brown criterion. The modified Sheorey model then is utilized to estimate the stress magnitudes. The results show that modern tectonic stress plays dominant role in the stress field. The dominant azimuth of maximum horizontal principal stress shows N20°~60°W. The stress orientation for the engineering area maintains relatively stable state. Prediction of stress values indicates that the maximum and minimum horizontal principal stress values respectively score respectively at the values of 11.2~20.5 MPa and 6.6~12.2 MPa,at a burial depth of 500 m approximately. The values reach up to 25.9~28.2 MPa and 15.4~17.1 MPa with a burial depth of nearly 1000 m. It is also pointed that,under such high stress,rock bust or brittle failure of hard rocks can occur in the situation of over 500 meters' buried depth,while large deformation nearly occur in the surrounding rocks masses. The predicted results can be well validated by in-situ stress measurements. The proposed method outperforms traditional ones in predicting stress state of linear engineering projects,and shows a promising application prospect.

       

    /

    返回文章
    返回