彭铭, 王登一, 刘鎏, 刘成成, 卢崔灿. 2020: 基于机器学习和地震勘探的层状地质体智能识别研究. 工程地质学报, 28(S1): 230-236. DOI: 10.13544/j.cnki.jeg.2020-280
    引用本文: 彭铭, 王登一, 刘鎏, 刘成成, 卢崔灿. 2020: 基于机器学习和地震勘探的层状地质体智能识别研究. 工程地质学报, 28(S1): 230-236. DOI: 10.13544/j.cnki.jeg.2020-280
    PENG Ming, WANG Dengyi, LIU Liu, LIU Chengcheng, LU Cuican. 2020: INTELLIGENT RECOGNITION OF LAYERED GEOLOGICAL BODY BASED ON MACHINE LEARNING AND SEISMIC EXPLORATION. JOURNAL OF ENGINEERING GEOLOGY, 28(S1): 230-236. DOI: 10.13544/j.cnki.jeg.2020-280
    Citation: PENG Ming, WANG Dengyi, LIU Liu, LIU Chengcheng, LU Cuican. 2020: INTELLIGENT RECOGNITION OF LAYERED GEOLOGICAL BODY BASED ON MACHINE LEARNING AND SEISMIC EXPLORATION. JOURNAL OF ENGINEERING GEOLOGY, 28(S1): 230-236. DOI: 10.13544/j.cnki.jeg.2020-280

    基于机器学习和地震勘探的层状地质体智能识别研究

    INTELLIGENT RECOGNITION OF LAYERED GEOLOGICAL BODY BASED ON MACHINE LEARNING AND SEISMIC EXPLORATION

    • 摘要: 地震勘探是一种广泛应用于地下油气勘探、地质结构勘探的一种无损探测技术,但是由于地下结构的复杂性和介质的不均一性,导致地震信号的解释和反演有多解性,依赖专家主观经验,限制了地震勘探的效率和准确性。本文采用机器学习软件Tensorflow基于人工神经网络建立层状地质体和地震勘探信号之间的非线性模型,用于岩溶地区浅层地震勘探信号的自动解译和识别。首先,结合实际岩溶地区的工程地质介质特点,生成数千个简化的水平层状地质模型,将介质设置为岩土,水和气体;其次,利用有限差分方法对5000组随机地层进行地震波传播数值模拟,得到不同随机地层对应的地震信号;最后将4000组作为训练集建立人工神经网络模型,将1000组号作为测试集以检验其学习效果。研究发现,利用该方法在不需要人工滤波以及特征提取的情况下,可以准确地解译出地层分界面的深度以及地层速度,提高了地震信号解译的经济性和效率。本研究初步讨论了机器学习方法运用在地震勘探中的可行性,对岩溶地区浅层地震勘探信号的解译有一定的指导意义。

       

      Abstract: Seismic exploration is a non-destructive detection technology widely applied in oil and gas exploration or geological structure exploration. The seismic signals are quite difficult to be interpreted due to the complexity of underground structures and the inhomogeneous media. Limitations of current methods used in seismic signals interpretation and needs for expert knowledge considerably reduce the efficiency of interpretation. We established a nonlinear model using neural network to predict geological information. Firstly, we generated thousands of random layered geological models of media in rock, water and air. Then we got one signal data each model by using finite difference method to simulate the propagation of seismic waves. At last, 80% signals and geological models data are used as training data sets and 20% as test data sets. As the tests show, this neural network accurately predicts signals the depths of underground media interface and velocity of the media between. We didn't use any filtering or feature extraction method in the work above. This method improves the seismic exploration economically and efficiently. The method of machine learning nicely fits in the simplified geological situation in karst area. This research is a preliminary discussion on the feasibility of applying machine learning method into seismic exploration.

       

    /

    返回文章
    返回