张伟伟, 李彦荣, 宫杨清, 等. 2022. 初始风积黄土结构演化的环境温度效应[J]. 工程地质学报, 30(2): 357-365. doi: 10.13544/j.cnki.jeg.2021-0285.
    引用本文: 张伟伟, 李彦荣, 宫杨清, 等. 2022. 初始风积黄土结构演化的环境温度效应[J]. 工程地质学报, 30(2): 357-365. doi: 10.13544/j.cnki.jeg.2021-0285.
    Zhang Weiwei, Li Yanrong, Gong Yangqing, et al. 2022. Effects of temperature fluctuation on structural evolution of initial loess deposits[J]. Journal of Engineering Geology, 30(2): 357-365. doi: 10.13544/j.cnki.jeg.2021-0285.
    Citation: Zhang Weiwei, Li Yanrong, Gong Yangqing, et al. 2022. Effects of temperature fluctuation on structural evolution of initial loess deposits[J]. Journal of Engineering Geology, 30(2): 357-365. doi: 10.13544/j.cnki.jeg.2021-0285.

    初始风积黄土结构演化的环境温度效应

    EFFECTS OF TEMPERATURE FLUCTUATION ON STRUCTURAL EVOLU ̄TION OF INITIAL LOESS DEPOSITS

    • 摘要: 现今的黄土结构是在黄土初始风成堆积及后期黄土化过程中逐步形成的。季节性冷暖更替和昼夜气温变化使得初始风积黄土不断经受升降温循环作用,由此引发的结构演变是黄土化过程不可或缺的一部分。而关于初始风积黄土在温度循环作用下的结构演化规律及机理目前尚不清楚。本文通过模拟风积环境,再造了初始风积黄土样品,开展了温度循环物理模拟试验。采用温度传感器、激光位移传感器和高清摄影系统对环境温度、土样内部温度、土样竖向变形及顶面结构进行了实时监测。试验结果发现:土样的温度和竖向变形均随环境温度的变化呈周期性波动,波动曲线相较于环境温度均呈现出一定滞后;且土样竖向变形和土样温度的波动具有同步性。随温度循环次数的增加,土样呈整体收缩趋势,土样也由弹塑性变形逐渐过渡为弹性变形。相比于湿-干循环和上覆荷载作用,温度循环导致的初始风积黄土竖向应变最小(约为0.25%),结构扰动程度最弱。以上结果说明,虽然温度循环是风成黄土结构演化过程中的核心环境因素之一,但其在初期黄土结构演化中属次要角色。

       

      Abstract: The present-day loess structure is gradually formed with the process of initial accumulation of loess particles and the later lossification. The climate is typically dry in the period of loess accumulation and the initial loess deposit(ILD)suffers from daily and seasonal temperature fluctuations,which evidently leads to structural evolution of ILD. However,the mechanism behind is still unclear. In this study,ILD is reconstructed in the laboratory and physical simulation with temperature fluctuation is carried out. Ambient temperature,soil temperature,vertical deformation and structure of top surface of soil sample are monitored with thermocouple temperature sensors,laser displacement sensors and an industrial camera of high-resolution. The results show that both soil temperature and vertical deformation of soil sample fluctuate with the ambient temperature,but lag behind. The vertical deformation exhibits a synchronous fluctuation with the soil temperature. With temperature cycles,the soil sample keeps contraction,and the soil sample experiences elastic-plastic deformation and then elastic deformation. Compared with the effects of water and overlying load,the deformation and structure disturbance of ILD due to temperature fluctuation are minimum(about 0.25%). This indicates that temperature fluctuation plays a noncrucial role in the formation of present-day loess structure.

       

    /

    返回文章
    返回