李俊彦, 王其宽, 王汉勋, 张彬. 2021: 不同应力场条件下压气储能隧洞稳定性研究. 工程地质学报, 29(S1): 233-243. DOI: 10.13544/j.cnki.jeg.2021-0533
    引用本文: 李俊彦, 王其宽, 王汉勋, 张彬. 2021: 不同应力场条件下压气储能隧洞稳定性研究. 工程地质学报, 29(S1): 233-243. DOI: 10.13544/j.cnki.jeg.2021-0533
    LI Junyan, WANG Qikuan, WANG Hanxun, ZHANG Bin. 2021: STUDY ON THE STABILITY OF COMPRESSED AIR ENERGY STORAGE TUNNELS UNDER DIFFERENT STRESS FIELD CONDITIONS. JOURNAL OF ENGINEERING GEOLOGY, 29(S1): 233-243. DOI: 10.13544/j.cnki.jeg.2021-0533
    Citation: LI Junyan, WANG Qikuan, WANG Hanxun, ZHANG Bin. 2021: STUDY ON THE STABILITY OF COMPRESSED AIR ENERGY STORAGE TUNNELS UNDER DIFFERENT STRESS FIELD CONDITIONS. JOURNAL OF ENGINEERING GEOLOGY, 29(S1): 233-243. DOI: 10.13544/j.cnki.jeg.2021-0533

    不同应力场条件下压气储能隧洞稳定性研究

    STUDY ON THE STABILITY OF COMPRESSED AIR ENERGY STORAGE TUNNELS UNDER DIFFERENT STRESS FIELD CONDITIONS

    • 摘要: 深埋隧洞作为压缩空气储库的一种常用型式,其可能面临不同类型的地应力场,而当隧洞充气加压后,其稳定性将表现得更加复杂,如何选取合适的隧洞轴线布置方位将直接影响压气储能隧洞的稳定性。利用ABAQUS有限元软件建立某深埋压气储能隧洞的三维模型,通过改变隧洞轴线方向与最大水平主应力夹角的大小,研究不同应力场条件下的位移、应力以及塑性区等方面的特征,最终确定最佳的轴线布置方位。研究结果表明:不同类型地应力场条件下,压气储能隧洞在充气加压后,隧洞收敛位移得到抑制,各部位围岩压应力的均匀性提高,隧洞稳定性有所增强;充气加压后,位移、应力和塑性区随不同夹角的变化规律均发生一定程度的改变,且在不同应力场中的表现各不相同;充气加压后,不同应力场条件下的围岩塑性区范围均明显减小,只局部分布在拱顶部位;综合分析围岩位移、应力和塑性区的变化规律,可确定不同应力场条件下压气储能隧洞轴线的最佳布置方位为:在σHσHV型应力场中,隧洞轴线方向与最大水平主应力的夹角应尽量小于45°,而在σV型应力场中,隧洞轴线方向与最大水平主应力的夹角则应稍大于45°。以上研究结果对于压气储能隧洞的地质选址和轴线布置具有一定的参考价值。

       

      Abstract: As a commonly used type of compressed air storage, deep-buried tunnels may face different types of in-situ stress fields. When the tunnel is inflated and pressurized, its stability will be more complicated. We use ABAQUS finite element software to establish three-dimensional models of deep-buried compressed gas energy storage tunnels. By changing the angle between the tunnel axis direction and the maximum horizontal principal stress, the characteristics of displacement, stress and plastic zone are studied and we determine the best axis layout. The results show that under different types of in-situ stress field conditions, the convergent displacement of the tunnel is suppressed after the compressed air energy storage tunnel is inflated and pressurized, the uniformity of the compressive stress of the surrounding rock at each part is improved, and the stability of the tunnel is enhanced; after inflation and pressurization, displacement, stress and plastic zone change to a certain extent with different included angles, and their performance in different stress fields is different; after inflation and pressurization, the plastic zone range of surrounding rock under different stress field conditions is all obviously reduced, only locally distributed at the top of the arch; comprehensive analysis of the changes in the displacement, stress and plastic zone can determine the optimal layout of the axis:in the σH and σHV type stress field, the angle between the tunnel axis direction and the maximum horizontal principal stress should be less than 45° as much as possible, while in the σV type stress field, the angle between the tunnel axis direction and the maximum horizontal principal stress should be slightly greater than 45°. The results have certain reference value for the geological site selection and axis layout of the compressed gas energy storage tunnel.

       

    /

    返回文章
    返回