何双,崔圣华,裴向军,等. 2023. 基于多源数据的茂县石大关倾倒体形态结构探测与成因研究[J]. 工程地质学报, 31(3): 932-948. doi: 10.13544/j.cnki.jeg.2021-0005.
    引用本文: 何双,崔圣华,裴向军,等. 2023. 基于多源数据的茂县石大关倾倒体形态结构探测与成因研究[J]. 工程地质学报, 31(3): 932-948. doi: 10.13544/j.cnki.jeg.2021-0005.
    He Shuang,Cui Shenghua,Pei Xiangjun,et al. 2023. Morphological structure and failure mechanism of Shidaguan toppling body in Maoxian based on multi-source date[J]. Journal of Engineering Geology, 31(3): 932-948. doi: 10.13544/j.cnki.jeg.2021-0005.
    Citation: He Shuang,Cui Shenghua,Pei Xiangjun,et al. 2023. Morphological structure and failure mechanism of Shidaguan toppling body in Maoxian based on multi-source date[J]. Journal of Engineering Geology, 31(3): 932-948. doi: 10.13544/j.cnki.jeg.2021-0005.

    基于多源数据的茂县石大关倾倒体形态结构探测与成因研究

    MORPHOLOGICAL STRUCTURE AND FAILURE MECHANISM OF SHIDAGUAN TOPPLING BODY IN MAOXIAN BASED ON MULTI-SOURCE DATE

    • 摘要: 斜坡灾变过程地面形态和地下结构(形态结构)数据对斜坡稳定性评价和灾害防治有重要作用,基于空中遥测、地面勘测、内部实探和反演的“空-地-内”多源数据联合探测是形态结构研究的有效手段。茂县石大关变形体是发育在岷江右岸变质岩反倾斜坡上的特大型倾倒体(1388×104m3);2013年出现变形以来,最大位移量达40m,监测期间最大变形速率达156mm ·d-1,对岷江下游茂县、汶川县、都江堰市构成严重威胁。本文通过开展无人机(UAV)航测、人工地面调查、表面位移监测(GNSS)、钻孔、探井和高密度电法(ERT)勘察手段,对石大关倾倒体形态结构进行了调查。结果表明:(1)石大关倾倒体上游(北侧)以前缘碎块石土滑塌、中后部多级拉裂、侧缘雁列状剪切,下游(南侧)以前缘全风化段鼓胀和侧向裂解为特征,上游最大位移量达下游的24倍。(2)倾倒折断带埋深范围35~75m,上游向下游倾倒深度增加;折断带厚度0.8~10.3m,在倾倒方向上呈阶梯形态;进一步调查表明,上游折断带内发生以次级剪切带和擦痕为主要标志的剪切滑移,下游以折断带反翘和岩体原位风化为主要特征。从而认为,石大关倾倒体上游变形过程属于传统“岩层倾倒→后缘拉裂→基部折断→整体滑移”模式;下游倾倒因受前缘山体阻挡而被抑制,导致前部压应力集中,前缘岩体因受长期挤压、破碎而加速风化,斜坡整体滑移发生在挤压部位剪切破坏后,下游风化段鼓胀和侧向裂解是下游侧斜坡失稳的前兆;本文提出了石大关变形体“岩层倾倒→后缘拉裂、前部挤压应力集中-基部折断→前部鼓胀、侧向裂解、反翘剪出→整体滑移”新模式。所采用形态结构调查方法和结果有助于类似斜坡灾变过程分析。

       

      Abstract: Data of surface morphology and underground structure(morphological structure) in the course of slope disaster are necessary in slope stability evaluation and disaster prevention. The "space-ground-interior" multi-source date joint analysis is an effective method for morphological structure research based on aerial telemetry,ground survey,internal real exploration and inversion. Morphological and structural investigation of the Shidaguan oversize toppling body(1388×104m3),located on the anti-inclined slope of metamorphic rocks on the right bank of Minjiang River,was carried out by unmanned aerial vehicle(UAV)aerial survey,artificial ground survey,surface displacement monitoring(GNSS),drilling,exploration well and electrical resistivity tomography(ERT). The results show that the upper reaches(north side) of the Shidaguan toppling body are characterized by the collapse of debris and soil at the leading edge,multi-stage tension cracking at the middle and rear ends,and lateral margin en echelon shear,but the swelling and lateral cracking of completely weathered phyllite at the lower reaches(south side),with the maximum displacement of the upper reaches up to 24 times that of the lower reaches. The toppling fracture zone is step-shaped in the toppling direction,with a thickness of 0.8~10.3m and a buried depth of 35~75m,increasing from upstream to downstream. Further investigation of macroscopic and microscopic material structure shows that the shear slip in the upstream fracture zone is mainly marked by the secondary shear zone and the scratches,and the insitu weathering of the rock and reverse bend in the downstream fracture zone is the main characteristic. It is further found that the upper reaches of the Shidaguan toppling body belong to the traditional mode of "rock toppling→rear pull crack→base break→integral slip". The toppling of the downstream is inhibited by the blocking of mountain in the leading edge,the compressive stress of the front part is concentrated,and the basal body breaks and slippage occur after the shear failure of the extrusion part. Hence a new model of "rock toppling→rear pull crack and pressure stress concentration at the front→base fracture→front bulge,lateral crack,and back warping shear→integral slip" is proposed. The methods and results of the morphological structure survey are helpful to the analysis of catastrophic processes of similar slopes.

       

    /

    返回文章
    返回