彭秀华, 刘素嘉, 张涵轲, 等. 2024. L型抗滑桩加固土坡特性的离心模型试验与有限元模拟研究[J]. 工程地质学报, 32(1): 315-324. doi: 10.13544/j.cnki.jeg.2021-0747.
    引用本文: 彭秀华, 刘素嘉, 张涵轲, 等. 2024. L型抗滑桩加固土坡特性的离心模型试验与有限元模拟研究[J]. 工程地质学报, 32(1): 315-324. doi: 10.13544/j.cnki.jeg.2021-0747.
    Peng Xiuhua, Liu Sujia, Zhang Hanke, et al. 2024. Centrifuge model test and finite element analysis on L-pile reinforced slope[J]. Journal of Engineering Geology, 32(1): 315-324. doi: 10.13544/j.cnki.jeg.2021-0747.
    Citation: Peng Xiuhua, Liu Sujia, Zhang Hanke, et al. 2024. Centrifuge model test and finite element analysis on L-pile reinforced slope[J]. Journal of Engineering Geology, 32(1): 315-324. doi: 10.13544/j.cnki.jeg.2021-0747.

    L型抗滑桩加固土坡特性的离心模型试验与有限元模拟研究

    CENTRIFUGE MODEL TEST AND FINITE ELEMENT ANALYSIS ON L-PILE REINFORCED SLOPE

    • 摘要: L型抗滑桩在传统等截面抗滑桩的基础上加入横段,有效提高桩的稳定性和加固边坡效果。本文采用离心模型试验与数值模拟相结合的方法研究了L型抗滑桩加固土坡的变形特征与桩土相互作用。基于离心模型试验得到了L型抗滑桩加固土坡的位移场,并采用有限元软件对离心模型试验过程进行了数值模拟,数值与试验结果得出的土坡荷载位移曲线吻合程度较高,水平位移分布趋势基本一致。模拟结果表明,L型抗滑桩的加固效果明显优于传统等截面抗滑桩,土坡位移减小约25%,桩转角减小约70%。通过对比、融合离心模型试验观测与数值模拟结果,分析了L型抗滑桩对土坡的加固效果及桩-土相互作用。横段上下侧的土压力分布相差很大,差距最大时上侧土压力仅为下侧土压力的20%左右。L型抗滑桩横段与土的摩擦力分布存在极小值,竖直段抗滑桩可以改变土坡位移场,使得内侧位移分布存在极大值。坡体受力变形分析结果表明,抗滑桩导致土坡出现土拱效应,L型抗滑桩的横段会进一步增强土拱效应,形成应力重分布,使横段所受土压力增大,提高抗滑桩的稳定性。

       

      Abstract: In this paper, a combination of centrifugal model tests and numerical simulations is used to study the deformation characteristics of L-pile-reinforced slopes and the interaction between piles and soil. Based on the centrifugal model test, the displacement field of the L-pile-reinforced slope under 50g gravity acceleration is obtained, and the centrifugal model test process is simulated using a finite element method. The numerical values agree well with the load-displacement curve of the slope obtained from the test results. Compared with the results of numerical simulation, it is found that the reinforcement effect of L-piles is obviously better than that of conventional piles. The displacement of the slope is reduced by about 25%, and the rotation angle is reduced by about 70%. The soil pressure distribution on the upper and lower sides of the surface horizontal section of the L-pile was quite different due to the horizontal section and vertical section, with the maximum difference of about 150 kPa. There is a minimum value of friction, about 10 kPa, between the horizontal section and the L-pile-reinforced slope. There is a peak value of displacement distribution inside the vertical section. Through the analysis of stress and deformation of the slope through various methods, it is verified that soil arching effect occurred on the slope under the action of the pile. The horizontal section of the L-pile further intensifies the soil arching effect and improves the stability of the L-pile.

       

    /

    返回文章
    返回