Volume 22 Issue 6
Dec.  2014
Turn off MathJax
Article Contents
CHEN Shanle, LIU Jian, CUI Tiejun, GENG Xiaowei. 2014: PREDICTION OF ROCK STRENGTH WITH DIAGONAL INTERSECTION LSSVM. JOURNAL OF ENGINEERING GEOLOGY, 22(6): 1071-1076. doi: 10.13544/j.cnki.jeg.2014.06.009
Citation: CHEN Shanle, LIU Jian, CUI Tiejun, GENG Xiaowei. 2014: PREDICTION OF ROCK STRENGTH WITH DIAGONAL INTERSECTION LSSVM. JOURNAL OF ENGINEERING GEOLOGY, 22(6): 1071-1076. doi: 10.13544/j.cnki.jeg.2014.06.009

PREDICTION OF ROCK STRENGTH WITH DIAGONAL INTERSECTION LSSVM

doi: 10.13544/j.cnki.jeg.2014.06.009
Funds:

  • Received Date: 2013-11-13
  • Rev Recd Date: 2014-06-09
  • Publish Date: 2014-12-25
  • The classical failure criteria for prediction of rock strength can not be accurate. This study uses the diagonal intersection least squares SVM(DILSSVM)as new method for prediction of the rock strength in a wide loading such as uniaxial and triaxial loading. For each rock type, data obtained from field experiments and laboratory experiments are divided into training and test sets. DILSSVM is employed to train with the compressive stress (c) and minor principal stress (3) and to predict the value of major principal stress (1f) at failure. The training sets are used in regression analysis for m in Hoek-Brown (H-B) equation. Then, the test sets are used to examine the accuracy of target rock strength with DILSSVM after training and these of the two H-B model(with different m). Comparison of the results of the DILSSVM with the two H-B models shows that the DILSSVM always has less root mean squared error(decreased 45% ~55%) and higher coefficient of determination(enhanced 0.055~0.085,near to 1). The DILSSVM shows better flexibility in 1f at failure in each rock type and a wide loading range.
  • loading
  • [1] 吴黎辉. 岩体经验强度准则研究[硕士学位论文][D]. 西安:长安大学, 2004. Wu Lihui. Research on rock mass experience strength criterion[Thesis of Master][D]. Xi'an:Chang'an University, 2004.

    [2] 崔铁军, 马云东,肖晓春. 基于神经网络的岩石强度准则研究[J]. 华中师范大学学报(自然科学版), 2014, 48 (1): 131~135. Cui Tiejun, Ma Yundong, Xiao Xiaochun. Research on the rock strength based on the artificial neural networks[J]. Journal of Huazhong Normal University(Natural Science), 2014, 48 (1): 131~135.

    [3] 汤献良, 赵建军,黄润秋. 小湾水电站坝基岩体质量动态评价研究[J]. 工程地质学报, 2013, 21 (3): 370~376. Tang Xianliang, Zhao Jianjun, Huang Runqiu. Dynamic evaluation of rock mass quality for dam foundation at Xiaowan hydropower station[J]. Journal of Engineering Geology, 2013, 21 (3): 370~376.

    [4] 许飞, 胡修文,黄香亮,等. 边坡岩体力学参数对 Hoek-Brown 准则参数敏感性的综合性分析[J]. 工程地质学报, 2013, 21 (4): 613~618. Xu Fei, Hu Xiuwen, Huang Xiangliang, et al. Orthogonal analysis of sensitivity of mechanical parameters of slope rock mass to parameters in Hoek-Brown criterion[J]. Journal of Engineering Geology, 2013, 21 (4): 613~618.

    [5] Vapnik V N. The nature of statistical learning theory[M]. New York, USA:Springer-Verlag, 1995.

    [6] Vapnik V, Levin E, Cun Y L. Measuring the VC-dimension of a learning machine[J]. Neural Computation, 1994, 6 (5): 851~876.

    [7] Singh V K, Singh D, Singh T N. Prediction of strength properties of some schistose rocks from petrographic properties using artificial neural networks[J]. International Journal of Rock Mechanics and Mining Sciences, 2001, 38 (2): 269~284.

    [8] Demuth H,Beal M,Hagan M. Neural network toolbox 5 user's guide of the MATLAB software[S]. Natick, Mass, 2007.

    [9] Hecht-Nielsen R.Kolmogorov's mapping neural network existence theorem[A]//Proceedings of the First IEEE International Conference on Neural Networks[C]. San Diego: 1987, 11~15.

    [10] Aldrich C, van Deventer J S J, Reuter M A. The application of neural nets in the metallurgical industry[J]. Minerals Engineering, 1994, 7 (5—6): 793~809.

    [11] 崔铁军, 马云东,白润才. 基于神经网络优化遗传算法的爆破参数优化[J]. 地震工程与工程振动, 2014, 34 (1): 257~262. Cui Tiejun, Ma Yundong, Bai Runcai. Optimization of blast parameters using genetic algorithm optimized by artificial neural network[J]. Earthquake Engineering and Engineering Dynamics, 2014, 34 (1): 257~262.

    [12] Hoek E,Brown ET. Underground excavations in rock[M]. London: Institution of Mining and Metallurgy, 1980.

    [13] 张后全, 徐建峰, 贺永年,等. 脆性岩石真三轴能量强度准则研究[J]. 中国矿业大学学报, 2012, 41 (4): 564~570. Zhang Houquan, Xu Jianfeng, He Yongnian, et al. Study of triaxial energy strength criterion for brittle rock materials[J]. Journal of China University of Mining & Technology, 2012, 41 (4): 564~570.

    [14] 王洪德, 崔铁军,马云东. 基于差异进化算法的爆破震速参数识别与优化[J]. 中国安全科学学报, 2012, 22 (5): 17~23. Wang Hongde, Cui Tiejun, Ma Yundong. Blasting vibration velocity parameters recognition and optimization based on differential evolution algorithm[J]. China Safety Science Journal, 2012, 22 (5): 17~23.

    [15] 崔铁军, 马云东. 基于差异进化支持向量机的坑外土体沉降预测[J]. 中国安全科学学报, 2013, 23 (1): 83~89. Cui Tiejun, Ma Yundong. Prediction of soil settlement outside pit based on DE and SVM[J].China Safety Science Journal, 2013, 23 (1): 83~89.

    [16] Everitt B S. The cambridge dictionary of statistics[M]. New York: Cambridge University Press, 2006.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索
    Article views (2780) PDF downloads(480) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint