Volume 23 Issue 1
Feb.  2015
Turn off MathJax
Article Contents
YANG Aiwu, LEI Bo. 2015: EXPERIMENTAL STUDY ON EFFECT OF SHEARING RATE ON MECHANICAL BEHAVIOR OF STRUCTURED SOFT DREDGER FILL. JOURNAL OF ENGINEERING GEOLOGY, 23(1): 7-12. doi: 10.13544/j.cnki.jeg.2015.01.002
Citation: YANG Aiwu, LEI Bo. 2015: EXPERIMENTAL STUDY ON EFFECT OF SHEARING RATE ON MECHANICAL BEHAVIOR OF STRUCTURED SOFT DREDGER FILL. JOURNAL OF ENGINEERING GEOLOGY, 23(1): 7-12. doi: 10.13544/j.cnki.jeg.2015.01.002

EXPERIMENTAL STUDY ON EFFECT OF SHEARING RATE ON MECHANICAL BEHAVIOR OF STRUCTURED SOFT DREDGER FILL

doi: 10.13544/j.cnki.jeg.2015.01.002
Funds:

  • Received Date: 2014-01-15
  • Rev Recd Date: 2014-07-17
  • Publish Date: 2015-02-25
  • In clay shear deformation process, different shear rates have different effects on its structural damage, thus affecting its mechanical behavior. This paper takes the soft dredger fill from Tianjin Binhai New Area as research object. It discusses the structural about soft dredger fill, and carries out the triaxial shear tests to study effects on mechanical behavior caused by different shear rates, analyzes its mechanical effect of shearing rate. The test result indicates that as the shear rate increases, at low confining pressure condition, the strength and structural yield stress of soft dredger fill increase at first and then decrease, existing a critical shear rate. At high confining pressure condition, the strength and structural yield stress increase gradually, which shows a positive correlation with the shearing rate. The critical rate is disappearing gradually. However, at different confining pressure conditions, the cohesion of dredger fill decreases as the shearing rate increases. As the shearing rate increases, the internal friction angle shows an increasing trend at low confining pressure condition, which shows a decreasing trend at high confining pressure condition. In the shearing process, pore water pressure increases with the increase of axial strain to a certain value, and then becomes stable. With further increase of confining pressure, the stable value of pore water pressure shows a decreasing trend with the increase of shearing rate.
  • loading
  • Cai Y, Kong L W, Guo A G, et al. 2006. Effects of shear strain rate on mechanical behavior of Zhanjiang strong structured clay[J]. Rock and Soil Mechanics, 27 (8): 1235~1240.

    Chen T L, Zhou C, Shen Z J. 2004. Compression and shear test of structured clay[J]. Chinese Journal of Geotechnical Engineering, 26 (1): 31~35.

    Chen X P, Zeng L L, Lü J, et al. 2008. Experimental study of mechanical behavior of structured clay[J]. Rock and Soil Mechanics, 29 (12): 3223~3228.

    Cheng Y X. 2008. The structural strength formation mechanism of seashore dredger fill and key technique of vacunm preload method[Doctorate Thesis][D]. Xi'an: Chang'an University.

    Crawford C B,National Research Council Canada. Division of Building Research. 1960. The influence of rate of strain of effective stresses in sensitive clay[M]. Division of Building Research, National Research Council.

    Dou Y, Sheng S X, Ma M Y. 1987. Geotechnical laboratory measurement techniques[M]. Beijing: Water Power Press.

    Du D J, Yang A W, Liu Ju, et al. 2010. Tianjin Binhai Dredger Fill[M]. Beijing: Science Press.

    Gong X N, Xiong C X, Xiang K X, et al. 2000. The formation of clay structure and its influence on mechanical characteristics of clay[J]. Journal of Hydraulic Engineering, 22 (10): 43~47.

    Li L L. 2007. Behavior of structured clay and its application [Doctorate Thesis][D]. Hangzhou: Zhejiang University.

    Qi J F, Luan M T, Nie Y, et al. 2008. Experimental study of shear and strength behavior of saturated clay[J]. Journal of Dalian University of Technology, 48 (4): 551~556.

    Shen Z J. 1998. Engineering properties of soft soils and design of soft ground[J]. Chinese Journal of Geotechnical Engineering, 20 (1): 100~111.

    Sun D A, Chen B. 2011. Experimental study on the mechanical behavior of structural soft clay[J]. China Civil Engineering Journal, 44 (S2): 65~68.

    Vaid Y P, Robertson P K, Campanella R G. 1979. Strain rate behavior of Saint-Jean-Vianney clay[J]. Canadian Geotechnical Journal, 16 (1): 34~42.

    Wang L Z, Zhao Z Y, Li L L. 2004. Nonlinear elastic model considering soil structural damage[J]. Shuili Xuebao, 35 (1): 83~89.

    Yang A W. 2011. Study on rheologic characteristics and its constitutive model of structured soft dredger fill[Doctorate Thesis][D]. Tianjin: Tianjin University.

    蔡羽, 孔令伟,郭爱国,等. 2006. 剪应变率对湛江强结构性黏土力学性状的影响[J]. 岩土力学, 27 (8): 1235~1240.

    陈铁林, 周成, 沈珠江. 2004. 结构性黏土压缩和剪切特性试验研究[J]. 岩土工程学报, 26 (1): 31~35.

    陈晓平, 曾玲玲, 吕晶,等. 2008. 结构性软土力学特性试验研究[J]. 岩土力学, 29 (12): 3223~3228.

    成玉祥. 2008. 滨海吹填土结构强度形成机理与真空预压法关键技术研究[博士学位论文][D]. 西安: 长安大学.

    窦宜, 盛淑馨,马梅英. 1987. 土工实验室测定技术[M]. 北京: 水利水电出版社.

    杜东菊, 杨爱武,刘举,等. 2010. 天津滨海吹填土[M]. 北京: 科学出版社.

    龚晓南, 熊传祥, 项可祥,等. 2000. 黏土结构性对其力学性质的影响及形成原因分析[J]. 水利学报, 22 (10): 43~47.

    李玲玲. 2007. 结构性软土的性状研究及其应用[博士学位论文][D]. 杭州: 浙江大学.

    齐剑峰, 栾茂田, 聂影,等. 2008. 饱和黏土剪切变形与强度特性试验研究[J]. 大连理工大学学报, 48 (4): 551~556.

    沈珠江. 1998. 软土工程特性和软土地基设计[J]. 岩土工程学报, 20 (1): 100~111.

    孙德安, 陈波. 2011. 结构性软土力学特性的试验研究[J]. 土木工程学报, 44 (增2): 65~68.

    王立忠, 赵志远, 李玲玲. 2004. 考虑土体结构性的修正邓肯-张模型[J]. 水利学报, 35 (1): 83~89.

    杨爱武. 2011. 结构性吹填软土流变特性及其本构模型研究[博士学位论文][D]. 天津: 天津大学.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索
    Article views (2722) PDF downloads(805) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint