Volume 23 Issue 1
Feb.  2015
Turn off MathJax
Article Contents
XUE Yadong, YUE Lei, LI Shuobiao. 2015: EXPERIMENTAL STUDY ON MECHANICAL PROPERTIES OF SOIL-ROCK MIXTURE CONTAINING WATER. JOURNAL OF ENGINEERING GEOLOGY, 23(1): 21-29. doi: 10.13544/j.cnki.jeg.2015.01.004
Citation: XUE Yadong, YUE Lei, LI Shuobiao. 2015: EXPERIMENTAL STUDY ON MECHANICAL PROPERTIES OF SOIL-ROCK MIXTURE CONTAINING WATER. JOURNAL OF ENGINEERING GEOLOGY, 23(1): 21-29. doi: 10.13544/j.cnki.jeg.2015.01.004

EXPERIMENTAL STUDY ON MECHANICAL PROPERTIES OF SOIL-ROCK MIXTURE CONTAINING WATER

doi: 10.13544/j.cnki.jeg.2015.01.004
Funds:

  • Received Date: 2014-10-27
  • Rev Recd Date: 2014-12-25
  • Publish Date: 2015-02-25
  • The deformation and shear strength parameters of soil-rock mixtures are mainly affected by the stone content, stone shape, nature of soil and water. Nowadays, the study mainly focuses on the three former aspects. The effect of water on the mechanical properties is rarely studied. This paper uses the pebbles, silty clay and water to make soil-rock mixture samples and carrys out large-scale direct shear tests. The test results show that as the shear displacement of model increases, the shear stress-displacement curve of soil-rock mixtures can be divided into three stages: linear deformation stage, initial yielding stage and hardening stage. The interaction of ratio of water and ratio of pebbles affects the mechanical properties of soil-rock mixtures. Overall, the shear strength of mixtures decreases as water content increases. The trend of decrease is slow at first, and then becomes rapid, and slow down again. For the same rock content, the internal frictional angle experiences two stages of decline process as the water content increases. Firstly, it decreases slowly when the water content is low. Then it decrease rapidly when the water content is high.
  • loading
  • Dong J J,Yang X D. 2001. The Categorization and engineering characteristics of colluvial deposit[J]. Research of Soil and Water Conservation, 8 (1): 37~41.

    Hall E B. 1951. A triaxial apparatus for testing large soil specimens[J]. Special Tech. Publ.(ASTM),(106): 152~161.

    Iannacchione A T,Vallejo L E. 2000. Shear strength evaluation of clay-rock mixtures[A]//Proceedings of the slope stability 2000,Denver, 3-6 August 2000[C]. American Society of Civil Engineers, 209-23.

    Irfan T Y,Tang K Y. 1993. Effect of the coarse fractions on the shear strength of colluvium[M]. Geotechnical Engineering Office, Civil Engineering Department.

    Jafari M K,Shafiee A. 2004. Mechanical behavior of compacted composite clays[J]. Canadian Geotechnical Journal, 41 (6): 1152~1167.

    Li X,Liao Q L,He J M. 2004. In-situ tests and a stochastic structural model of rock and soil aggregate in the Three Gorges Reservoir Area[J]. International Journal of Rock Mechanics and Mining Sciences, 41 (3): 494.

    Lindquist E S. 1994. The strength and deformation properties of mélange[Doctorate Thesis][D]. Berkeley, California: University of California.

    Liu J F,Xu J, Gao C Y, et al. 2007. Study on strength effects of dry density and granularity on earth and rock mixtures[J]. Chinese Journal of Rock Mechanics and Engineering, 26 (S1): 3304~3310.

    Liu W P,Shi W M, Kong W X, et al. 2005. Weakening effect of water on gravel-soil in Three Gorges Reservoir area[J]. Rock and Soil Mechanics, 26 (11): 1857~1861.

    Liu Z Q,Xue Y D, Huang H W, et al. 2012. Experimental research on shear behavior of colluvium[J]. Rock and Soil Mechanics, 33 (8): 2349~2358.

    Medley E. 1994. The engineering characterization of mélanges and similar block-in-matrix rocks(bimrocks)[Doctorate Thesis][D]. Berkeley, California: University of California.

    Simoni A,Houlsby G T. 2006. The direct shear strength and dilatancy of sandgravel mixtures[J]. Geotechnical and Geological Engineering, 24 (3): 523~549.

    Song B H,Chen W W, Wu W J, et al. 2012. Experimental study of large scale direct shear test of sliding zone soil of Suoertou laudslide with different moisture contents[J]. Rock and Soil Mechanic, 33 (S2): 77~84.

    Tian H J. 2013. Experimental research on shear behavior of colluvium with water[Thesis of Master][D].Shanghai: Tongji University.

    Wang G J,Yang C H, Zhang C, et al. 2009. Experimental research on particle breakage and strength characteristics of rock and soil materials with different coarse-grain contents[J]. Rock and Soil Mechanics, 30 (12): 3649~3654.

    Wei H Z,Wang R, Hu M J, et al. 2008. Strength behaviour of gravelly soil with different coarse-grained contents in Jiangjiagou Ravine[J]. Rock and Soil Mechanics, 29 (1): 48~51,57.

    Xie M X.2007. The resembled bimrock mechanical behavior of colluvial materials–Li-Shan landslide area as an example. [Thesis of Master][D].Taiwan:Taiwan Jiao-tong University.

    Xu W J, Hu R L, Zeng R Y. 2006. Research on horizontal push-shear in-situ test of subwater soil-rock mixture[J]. Chinese Journal of Geotechnical Engineering, 28 (7): 814~818.

    Xu W J,Hu R L. 2009. Conception, classification and significations of soil-rock mixture[J]. Hydrogeology & Engineering Geology, 36 (4): 50~56.

    Xu W J,Zhang H Y. 2013. Research status and development trend of soil-rock mixture[J]. Advances in Science and Technology of Water Resources, 33 (1): 80~88.

    Xue Y D,Huang H W, Griffiths D V. 2011. Specimen reconstitution and uniaxial compressive strength testing of rock-soil mixtures[A]//Proceedings of International Symposium on Advances in Ground Technology and Geo-Information[C]. Singapore: Research Publishing, 289~299.

    Yao Y F. 1990. A new method for the strength and compressibility assessment of mixed soil[J]. Geotechnical Investigation & Surveying,(5): 22~29.

    You X H.2001. Stochastic structural model of the earth-rock aggregate and its application [Doctorate Thesis][D].Beijing∶North Jiao-tong University.

    Yu J K. 1991. Effects of gravel-soil particle composition on the shear strength[J]. Design of Hydroelectric Power Station, (4): 53~58.

    Zhang H. 2008. The experimental study on talus slope failure mechanism and stability[Doctorate Thesis][D]. Shanghai: Tongji University.

    董家钧, 杨贤德. 2001. 崩基层之分类与工程特性研究[J]. 水土保持研究, 8 (1): 37~41.

    刘建锋, 徐进,高春玉,等. 2007. 土石混合料干密度和粒度的强度效应研究[J]. 岩石力学与工程学报, 26 (增1): 3304~3310.

    刘文平, 时卫民,孔位学,等. 2005. 水对三峡库区碎石土的弱化作用[J]. 岩土力学, 26 (11): 1857~1861.

    刘忠强, 薛亚东,黄宏伟,等. 2012. 崩积体剪切性能试验研究[J]. 岩土力学, 33 (8): 2349~2358.

    宋丙辉, 谌文武,吴玮江,等. 2012. 锁儿头滑坡滑带土不同含水率大剪试验研究[J]. 岩土力学, 33 (S2): 77~84.

    田恒蛟. 2013. 崩积混合体含水力学特性的剪切试验研究[硕士学位论文][D]. 上海:同济大学.

    王光进, 杨春和,张超,等. 2009. 粗粒含量对散体岩土颗粒破碎及强度特性试验研究[J]. 岩土力学, 30 (12): 3649~3654.

    魏厚振, 汪稔,胡明鉴,等. 2008. 蒋家沟砾石土不同粗粒含量直剪强度特征[J]. 岩土力学, 29 (1): 48~51,57.

    谢孟修. 2007. 崩积层之类并构岩材料力学行为与模式——以梨山地滑区为例[硕士学位论文][D]. 台湾:台湾交通大学.

    徐文杰, 胡瑞林,曾如意. 2006. 水下土石混合体的原位大型水平推剪试验研究[J]. 岩土工程学报, 28 (7): 814~818.

    徐文杰, 胡瑞林. 2009. 土石混合体概念、分类及意义[J]. 水文地质工程地质, 36 (4): 50~56.

    徐文杰, 张海洋. 2013. 土石混合体研究现状及发展趋势[J]. 水利水电科技进展, 33 (1): 80~88.

    姚雨凤. 1990. 混合土的强度及压缩性的评价新方法[J]. 工程勘察,(5): 22~29.

    油新华. 2001. 土石混合体的随机结构模型及其应用研究[博士学位论文][D]. 北京:北方交通大学.

    于敬克. 1991. 砾石土料颗粒组成对抗剪强度的影响[J]. 水电站设计,(4): 53~58.

    张辉. 2008. 岩堆边坡破坏机理及其稳定性试验研究[博士学位论文][D]. 上海:同济大学.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索
    Article views (3245) PDF downloads(660) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint