Volume 23 Issue 1
Feb.  2015
Turn off MathJax
Article Contents
ZHANG Qian, DENG Hui, LI Qiang, LI Zhi. 2015: ANALYSIS OF SHEAR ZONE DEFORMATION BEHAVIOR IN COARSE-GRAINED SOIL BY LARGE SCALE DIRECT SHEAR TEST. JOURNAL OF ENGINEERING GEOLOGY, 23(1): 30-36. doi: 10.13544/j.cnki.jeg.2015.01.005
Citation: ZHANG Qian, DENG Hui, LI Qiang, LI Zhi. 2015: ANALYSIS OF SHEAR ZONE DEFORMATION BEHAVIOR IN COARSE-GRAINED SOIL BY LARGE SCALE DIRECT SHEAR TEST. JOURNAL OF ENGINEERING GEOLOGY, 23(1): 30-36. doi: 10.13544/j.cnki.jeg.2015.01.005

ANALYSIS OF SHEAR ZONE DEFORMATION BEHAVIOR IN COARSE-GRAINED SOIL BY LARGE SCALE DIRECT SHEAR TEST

doi: 10.13544/j.cnki.jeg.2015.01.005
  • Received Date: 2014-01-04
  • Rev Recd Date: 2014-03-27
  • Publish Date: 2015-02-25
  • The large scale direct shear test system includes overlaying rings that are the important component of shear box. Multiple sets of shear surfaces can be formed according to the structure of coarse-grained soil, which can reflect shear deformation characteristics clearly. In order to analyze the influence of coarse granules composed of hard rock material on the strength and deformation, the large scale direct shear test is made on coarse-grained soil. The coarse grain lithology is granite. The paper analyzes experiment laws and particle motion of the hard rock coarse-grained soil and finds that granitic coarse grains have a significant impact on the strength and deformation. Because of their hard rock lithology, granitic particles are not easy to be broken. In fact they mainly do the position adjustment and rolling motion. Staircase of shear displacement emerges in shear zone under low axial stress. Nevertheless, shear displacement in shear zone manifestations linear variation and more apparent dilatancy effect under high axial stress. The coarse-grained soil has high shear strength and stability after shearing failure. The results provides certain reference for engineering construction.
  • loading
  • BagherzadehKhalkhali A, Mirghasemi A A. 2009. Numerical and experimental direct shear tests for coarsegrained soils[J]. Particuology, 7 (1): 83~91.

    Cheng Z L, Wu L P, Ding H S. 2007. Research on movement of particle of fabric of granular material[J]. Rock and Soil Mechanics, 28(S1): 29~33.

    Ding X L, Li Y X, Wang X. 2010. Particle flow modeling mechanical properties of soil and rock mixtures based on digital image[J]. Chinese Journal of Rock Mechanics and Engineering, 29 (3): 477~484.

    Guo P J, Su X B. 2007. Shear strength, interparticle locking, and dilatancy of granular materials[J]. Canadian Geotechnical Journal, 44 (5): 579~591.

    Härtl J, Ooi J Y. 2011. Numerical investigation of particle shape and particle friction on limiting bulk friction in direct shear tests and comparison with experiments[J]. Powder Technology, 212 (1): 231~239.

    Jia X M, Chai H J, Zheng Y R. 2010. Mesomenchanics research of large direct shear test on soil and rock aggregate mixture with particle flow code simulation[J]. Rock and Soil Mechanics, 31 (9): 2695~2703.

    Li C, He C R, Wang C, et al. 2008. Study of scale effect of large-scale triaxial test of coarsegrained materials[J]. Rock and Soil Mechanics, (S1): 563~566.

    Liu S H, Xu Y F. 2001. Numerical simulation for a direct box shear test on granular material and microscopic consideration[J]. Chinese Journal of Rock Mechanics and Engineering, 20 (3): 288~292.

    Liu Y, Lu T H. 2009. Largescale simple shear tests of particle breakage of coarsegrained soil[J]. Journal of Hohai University(Natural Sciences), 37 (2): 175~178.

    Mair K, Frye K M, Marone C. 2002. Influence of grain characteristics on the friction of granular shear zones[J]. Journal of Geophysical Research, 107 (B10): 2219.

    Ouyang Z H, Li S H, Dai Z S. 2010. On the influence factors of mechanical properties for soil-rock mixture[J]. Journal of Experimental Mechanics, 25 (1): 61~67.

    Shi C, Wang S N, Liu L, et al. 2012. Structure modeling and mechanical parameters research of outwash deposits based on digital image analysis[J]. Rock and Soil Mechanics, 23 (11): 3393~3399.

    Wang Y, Li X, He J M, et al. 2014. Research status and prospect of rock and soil aggregate[J]. Journal of Engineering Geology, 22 (1): 112~123.

    Xu W J, Xu Q, Hu R L. 2011. Study on the shear strength of soil rock mixture by large scale direct shear test[J]. International Journal of Rock Mechanics and Mining Sciences, 48 (8): 1235~1247.

    Xu X F, Wei H Z, Meng Q S H, et al. 2013. Dem simulation on effect of coarse gravel content to direct shear strength and deformation characteristics of coarse-grained soil[J]. Journal of Engineering Geology, 21 (2): 311~316.

    You X H, Tang J S. 2002. Research on horizontal push-shear in-situ test of soil and rock mixture[J]. Chinese Journal of Rock Mechanics and Engineering, 21 (10): 1537~1540.

    程展林, 吴良平, 丁红顺. 2007. 粗粒土组构之颗粒运动研究[J]. 岩土力学, 28 (增1): 29~33.

    丁秀丽, 李耀旭, 王新. 2010. 基于数字图像的土石混合体力学性质的颗粒流模拟[J]. 岩石力学与工程学报, 29 (3): 477~484.

    贾学明, 柴贺军, 郑颖人. 2010. 土石混合料大型直剪试验的颗粒离散元细观力学模拟研究[J]. 岩土力学, 31 (9): 2695~2703.

    李翀, 何昌荣, 王琛,等. 2008. 粗粒料大型三轴试验的尺寸效应研究[J]. 岩土力学, (增1): 563~566.

    刘斯宏, 徐永福. 2001. 粒状体直剪试验的数值模拟与微观考察[J]. 岩石力学与工程学报, 20 (3): 288~292.

    刘尧, 卢廷浩. 2009. 粗粒土大型单剪颗粒破碎试验研究[J]. 河海大学学报(自然科学版), 37 (2): 175~178.

    欧阳振华, 李世海, 戴志胜. 2010. 块石对土石混合体力学性能的影响研究[J]. 实验力学, 25 (1): 61~67.

    石崇, 王盛年, 刘琳,等. 2012. 基于数字图像分析的冰水堆积体结构建模与力学参数研究[J]. 岩土力学, 23 (11): 3393~3399.

    王宇, 李晓, 赫建明,等. 2014. 土石混合体细观特性研究现状及展望[J]. 工程地质学报, 22 (1): 112~123.

    徐肖峰, 魏厚振, 孟庆山,等. 2013. 粗粒含量对砾类土直剪过程中强度与变形特性影响的离散元模拟研究[J]. 工程地质学报, 21 (2): 311~316.

    油新华, 汤劲松. 2002. 土石混合体野外水平推剪试验研究[J]. 岩石力学与工程学报, 21 (10): 1537~1540.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索
    Article views (3102) PDF downloads(641) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint