Volume 23 Issue 1
Feb.  2015
Turn off MathJax
Article Contents
SU Baiyan, XU Qiang, DENG Maolin. 2015: LABORATORY TESTS ON WATER-SATURATED RHEOLOGICAL PROPERTY OF CARBONACEOUS ARGILLACEOUS LIMESTONE. JOURNAL OF ENGINEERING GEOLOGY, 23(1): 37-43. doi: 10.13544/j.cnki.jeg.2015.01.006
Citation: SU Baiyan, XU Qiang, DENG Maolin. 2015: LABORATORY TESTS ON WATER-SATURATED RHEOLOGICAL PROPERTY OF CARBONACEOUS ARGILLACEOUS LIMESTONE. JOURNAL OF ENGINEERING GEOLOGY, 23(1): 37-43. doi: 10.13544/j.cnki.jeg.2015.01.006

LABORATORY TESTS ON WATER-SATURATED RHEOLOGICAL PROPERTY OF CARBONACEOUS ARGILLACEOUS LIMESTONE

doi: 10.13544/j.cnki.jeg.2015.01.006
Funds:

  • Received Date: 2014-04-01
  • Rev Recd Date: 2014-10-08
  • Publish Date: 2015-02-25
  • The water-saturated direct shear rock rheological test is carried out on the carbonaceous argillaceous limestone at the slip zone of Jiweishan landslide, Wulong, Chongqing. A rock direct shear rheometer is used. The rheological test results give the shear stress-shear displacement time-history curves of the slip zone and the long-term strength parameters of the rock. The results show that: the long-term strength in the water-saturated conditions significantly decreases, comparing to the rheological strength in the natural conditions and the instantaneous shear strength parameters. The internal frictional coefficient of the carbonaceous argillaceous limestone in the water-saturated conditions is lower than that of natural rheology 13.87%, and lower than that of the instantaneous shear 40.91%. The cohesion of the carbonaceous argillaceous limestone in the water-saturated conditions is lower than that of natural rheology 13.81%, and lower than that of the instantaneous shear 36.67%. Because of the crack damage propagation, the long-term shear strength in the water-saturated conditions decreases, comparing to that in the natural conditions, but does not decrease significantly, comparing to the long-term shear strength of the direct shear rheological test and the instantaneous shear strength. These findings can provide the important experimental and theoretical basis for in-depth understanding and analysis of the rheological mechanical properties of the slip zone soft rock in Jiweishan landslide.
  • loading
  • Beekman F, Stephenson R A, Korsch R J. 1997. Mechanical stability of the redbank thrust zone, central Australia: Dynamic and rheological implications[J]. Australian Journal of Earth Sciences, 44 (2): 215~226.

    Burov E B. 2010. The equivalent elastic thickness(T-e), seismicity and the longterm rheology of continental lithosphere: Time to burnout “creme brulee”?Insights from large-scale geodynamic modeling[J]. Tectonophysics, 484 (1—4): 4~26.

    Burov E, Diament M. 1996. Isostasy, equivalent elastic thickness, and inelastic rheology of continents and oceans[J]. Geology, 24 (5): 419~422.

    Burov E B. 2011. Rheology and strength of the lithosphere[J]. Marine and Petroleum Geology, 28 (8): 1402~1443.

    Cao Y J. 2006.Systematic engineering geological study on the stability of high slope with soft rock ——Taking the Zipingpu water conservancy project in Minjiang River as a case[Doctorate Thesis][D].Chengdu: Chengdu University of Technology.

    Deng M L, Xu Q, Cai G J, et al. 2012. Microcharacteristics of weaksoft zone of Jiweishan rockslide in Wulong county, Chongqing, June 5, 2009[J]. Geotechnical Investigation & Surveying, 40 (4): 5~10.

    Deng M L, Xu Q, Han B, et al. 2013. Experimental study on the rheology of soft rocks in the slip zone of Jiweishan rockslide[J]. Geotechnical Investigation & Surveying, 41 (7): 7~11.

    Deng M L, Xu Q, Han B, et al. 2014. The microscopic structure and rheological characteristics of the slip zone soft rock of Jiweishan landslide in Wulong of Chongqing, China[J]. Mountain Research, 32 (3): 233~240.

    Furya G,Sassa K, Hiura H, et al. 1999. Mechanism of creep movement caused by landslide activity and underground erosion in erystalline sehist, Shikoku Island, southwestem Japan[J]. Engineering Geology, 53 : 311~325.

    Griggs D. 1939. Creep of rocks[J]. The Journal of Geology, 47 (3): 225~251.

    Handy M R, Brun J P. 2004. Seismicity, structure and strength of the continental lithosphere[J]. Earth and Planetary Science Letters, 223 (3—4): 427~441.

    Huang R Q. 2000. Timedependent deformation of a high rock slope and its engineering-geological significance[J]. Journal of Engineering Geology, 8 (2): 148~153.

    Li H M, Li Z H, Su C D. 2004. Testing study on creep characteristics of marble[J]. Chinese Journal of Rock Mechanics and Engineering, 23 (22): 3745~3749.

    Li L Q, Xu W Y, Wang W, et al. 2010. Estimation of longterm strength for Xiangjiaba sandstone based on creep tests[J]. Engineering Mechanics, 27 (11): 127~136.

    Liu C X, Zhang J W, He J D, et al. 2010. Phase deformation and viscous properties in creep test for fine sandstone specimen[J]. Mining & Metallurgy, 19 (4): 12~15.

    Liu C Z. 2010. Mechanism analysis on the Jiweishan rockfall disaster happened in Wulong, Chongqing, June 5, 2009 [J]. Journal of Engineering Geology, 18 (3): 297~304.

    Liu M Y, Xu C Y. 2000. Rheological properties of anhydrite and determination of its longtime strength[J]. Journal of China Mining, 9 (2): 53~55.

    Lou S F, Yu Y Z. 2006. Mechanical study of landsliding deformation for a lime factory[J]. Sichuan Building Science, 32 (2): 87~89.

    Maranini E, Brignoli M. 1999. Creep behaviour of a weak rock: experimental characterization[J]. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, 36 (1): 127~138.

    Okubo S, Fukui K, Nishimatsu Y. 1993. Control performance of servocontrlled testing manchines in compression and creep tests[J]. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, 30 (3): 247~255.

    Precigout J, Gueydan F. 2009. Mantle weakening and strain localization: Implications for the long~term strength of the continental lithosphere[J]. Geology, 37 (2): 147~150.

    Rice J R. 1975. On the stability of dilatant hardening for saturated rock masses[J]. Journal of Geophysical Research, 80 (11): 1531~1536.

    Shen R Z, Li T D, Yang S H. 1996.The treatment theory and engineering practice [M]. Beijing :China Railway Publishing House.

    Sun J. 2007. Rock rheological mechanics and its advance in engineering apllicaton[J]. Chinese Journal of Rock Mechanics and Engineering, 26 (6): 1081~1106.

    Trasatti E, Giunchi C, Bonafede M. 2005. Structural and rheological constraints on source depth and overpressure estimates at the Campi Flegrei caldera, Italy[J]. Journal of Volcanology and Geothermal Research, 144 (1—4): 105~118.

    Xia X L, Xu P, Ding X L. 1996. Rheological characteristics of rock and stability rheological analysis for high slope[J]. Chinese Journal of Rock Mechanics and Engineering, 15 (4): 312~322.

    Xu Q, Huang R Q, Yin Y P, et al. 2009. The Jiweishan landslide of June 5, 2009 in Wulong, Chongqing: Characteristics and failure mechanism[J]. Journal of Engineering Geology, 17 (4): 433~444.

    Xu Q, Fan X M, Huang R Q, et al. 2010. A catastrophic rockslide debris flow in Wulong, Chongqing, China in 2009∶Background, characterization, andcauses[J]. Landslides, 7 (1): 75~87.

    Xu Q. 2012. The Oretical studies on prediction of landsilds using slope deformation process data[J]. Journal of Engineering Geology, 20 (2): 145~151.

    Yang T H, Rui Y Q, Tang Chun'an, et al. 2004. Study on deformation features and dynamic stability of creeping slope of Fushun west strip mine[J]. Rock and Soil Mechanics, 25 (1): 153~156.

    Yin Y P. 2010. Mechanism on apparent dip slide of inclined bedding rockslide—A case study of Jiweishan rockslide in Wulong, Chongqing[J]. Chinese Journal of Rock Mechanics and Engineering, 29 (2): 217~226.

    Zamam M, Hossain M, Faruque M. 1997. Creep constitutive modeling of rock shale and evaluation of model parameters using optimization[J]. Indian Geotechnical, 27 (3): 221~240.

    Zhang X Z, Wang L, Zhang D J, et al. 1999. An experimental study on rheological characteristics of gabbro in east mountain slope of Zhujiabaobao mine[J]. Journal of Chongqing University(Natural Science Edition), 22 (5): 99~103.

    Zhang Y A, Li F. 2010. Experimental study on shear creep properties of the mudstone in red beds[J]. Geotechnical Investigation & Surveying, 38 (4): 23~26.

    Zhang Y A, Li F, Chen J. 2008. Analysis of the interaction between mudstone and water[J]. Journal of Engineering Geology, 16 (1): 22~26.

    Zhou D P, Zhu B Z, Mao J Q, et al. 1995.The rheological mechanics principle and its application in the geotechnical engineering[M].Chengdu∶Southwest Jiaotong University Press.

    Zhu D H, Chen G X. 2002. Experimental study of Nanjing redbed on rheology[J]. Journal of Nanjing University of Technology, 24 (5): 77~79.

    曹运江. 2006. 含软岩高边坡稳定性的系统工程地质研究——以岷江紫坪铺水利枢纽工程为例. [博士学位论文][D]. 成都: 成都理工大学.

    邓茂林, 许强, 蔡国军,等. 2012. 重庆武隆鸡尾山岩质滑坡软弱带微观特征[J]. 工程勘察, 40 (4): 5~10.

    邓茂林, 许强, 韩蓓,等. 2013. 武隆鸡尾山滑坡滑带软岩流变试验研究[J]. 工程勘察, 41 (7): 7~11.

    邓茂林, 许强, 韩蓓,等. 2014. 武隆鸡尾山滑坡滑带软岩微观结构与流变特性[J]. 山地学报, 32 (2): 233~240.

    黄润秋. 2000. 岩石高边坡的时效变形分析及其工程地质意义[J]. 工程地质学报, 8 (2): 148~153.

    李化敏, 李振华, 苏承东. 2004. 大理岩蠕变特性试验研究[J]. 岩石力学与工程学报, 23 (22): 3745~3749.

    李良权, 徐卫亚, 王伟,等. 2010. 基于流变试验的向家坝砂岩长期强度评价[J]. 工程力学, 27 (11): 127~136.

    刘传孝, 张加旺, 贺加栋,等. 2010. 细砂岩阶段蠕应变特征与黏滞性试验研究[J]. 矿冶, 19 (4): 12~15.

    刘传正. 2010. 重庆武隆鸡尾山危岩体形成与崩塌成因分析[J]. 工程地质学报, 18 (3): 297~304.

    刘沐宇, 徐长佑. 2000. 硬石膏的流变特性及其长期强度的确定[J]. 中国矿业, 9 (2): 53~55.

    娄世飞, 于远忠. 2006. 某白灰厂滑坡变形机制研究[J]. 四川建筑科学研究, 32 (2): 87~89.

    申润植, 李妥德, 杨顺焕. 1996. 滑坡整治理论和工程实践[M]. 北京: 中国铁道出版社.

    孙钧. 2007. 岩石流变力学及其工程应用研究的若干进展[J]. 岩石力学与工程学报, 26 (6): 1081~1106.

    夏熙伦, 徐平, 丁秀丽. 1996. 岩石流变特性及高边坡稳定性流变分析[J]. 岩石力学与工程学报, 15 (4): 312~322.

    许强, 黄润秋, 殷跃平,等. 2009.2009年6.5重庆武隆鸡尾山崩滑灾害基本特征与成因机理初步研究[J]. 工程地质学报, 17 (4): 433~444.

    许强. 2012. 滑坡的变形破坏行为与内在机理[J]. 工程地质学报, 20 (2): 145~151.

    杨天鸿, 芮勇勤, 唐春安,等. 2004. 抚顺西露天矿蠕动边坡变形特征及稳定性动态分析[J]. 岩土力学, 25 (1): 153~156.

    殷跃平. 2010. 斜倾厚层山体滑坡视向滑动机制研究——以重庆武隆鸡尾山滑坡为例[J]. 岩石力学与工程学报, 29 (2): 217~226.

    张学忠, 王龙, 张代钧,等. 1999. 攀钢朱矿东山头边坡辉长岩流变特性试验研究[J]. 重庆大学学报(自然科学版), 22 (5): 99~103.

    张永安, 李峰, 陈军. 2008. 红层泥岩水岩作用特征研究[J]. 工程地质学报, 16 (1): 22~26.

    张永安, 李峰. 2010. 红层泥岩的剪切蠕变试验研究[J]. 工程勘察, 38 (4): 23~26.

    周德培, 朱本珍, 毛坚强,等. 1993. 流变力学原理及其在岩土工程中的应用[M]. 成都: 西南交通大学出版社,113~127.

    朱定华, 陈国兴. 2002. 南京红层软岩流变特性试验研究[J]. 南京工业大学学报(自然科学版), 24 (5): 77~79.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索
    Article views (2956) PDF downloads(478) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint