Volume 23 Issue 1
Feb.  2015
Turn off MathJax
Article Contents
LUO Hao, WU Faquan, WANG Dingwei, CHANG Jinyuan, BAO Han, XU Jiangbo, MA Aiyang. 2015: PHYSICAL AND MECHANICAL PROPERTIES OF MALAN LOESS AT ZHAOJIAAN LANDSLIDE AREA. JOURNAL OF ENGINEERING GEOLOGY, 23(1): 44-51. doi: 10.13544/j.cnki.jeg.2015.01.007
Citation: LUO Hao, WU Faquan, WANG Dingwei, CHANG Jinyuan, BAO Han, XU Jiangbo, MA Aiyang. 2015: PHYSICAL AND MECHANICAL PROPERTIES OF MALAN LOESS AT ZHAOJIAAN LANDSLIDE AREA. JOURNAL OF ENGINEERING GEOLOGY, 23(1): 44-51. doi: 10.13544/j.cnki.jeg.2015.01.007

PHYSICAL AND MECHANICAL PROPERTIES OF MALAN LOESS AT ZHAOJIAAN LANDSLIDE AREA

doi: 10.13544/j.cnki.jeg.2015.01.007
Funds:

  • Received Date: 2013-11-27
  • Rev Recd Date: 2014-09-11
  • Publish Date: 2015-02-25
  • Inundating or humidifying process can easily destroy the distinct metastable structure of loess and control its mechanical behavior. This paper analyzes the microstructure of Malan loess at Zhaojiaan landslide area. It uses grain size analysis, scanning electron microscope, and mercury intrusion porosimetry. The results demonstrate that as the loess depth increases from surface to deep, the cementation of clay mineral is increasing gradually, the trellis pores is compressed obviously, and micro-pore is unchanged nearly. Triaxial compression test on loess with different initial water content shows that the strength of loess at top and bottom location decreases with increasing in water content. Since the loess at bottom location has higher clay cementation, its strength is larger than that at top. The cohesion strength parameter c is much more sensitive to water than the internal frictional angle . Therefore the strength reduction with depth is caused primarily by the decreasing of c. Water content increasing of loess at the bottom due to rising of ground water level can cause the parts of clay mineral to soften, undermine the cementation between particles, and continuously destruct the microstructure of loess, which resulted in wriggles of Zhaojiaan landslide.
  • loading
  • Acharya G, Cochrane T, Davies T, et al. 2011. Quantifying and modeling post failure sediment yields from laboratory scale soil erosion and shallow landslide experiments with silty loess[J]. Geomorphology, 129 (1—2): 49~58.

    Assallay A M, Rogers C D F, Smalley I J. 1997. Formation and collapse of metastable particle packings and open structures in loess deposits[J]. Engineering Geology, 48 (1—2): 101~115.

    Deng J, Wang L M, Zhang Z Z, et al. 2010. Microstructure characteristics and forming environment of Late Quaternary period loess in the Loess Plateau of China[J]. Environmental Earth Science, 59 (8): 1807~1817.

    Derbyshire E, Wang J T, Jin Z X, et al. 1991. Landslides in the Gansu loess of China[J]. Cremlingen, 20 : 119~145.

    Derbyshire E, Asch T V, Billard A, et al. 1995. Modeling the erosional susceptibility of landslide catchments in thick loess: Chinese variations on a theme by Jan de Ploey[J]. Catena, 25 (1): 315~331.

    Derbyshire E, Mellors T W. 1988. Geological and geotechnical characteristics of some loess and loessic soils from China and Britain: A comparison[J]. Engineering Geology, 25 (1—4): 135~175.

    Derbyshire E, Meng X M, Dijkstra T A. 2000. Landslides in the Thick Loess Terrain of Northwest China[M]. Chichester: Wiley, 1~256.

    Derbyshire E. 2001. Geological hazards in loess terrain, with particular reference to the loess regions of China[J]. Earth Science Review, 54 (1—3): 231~260.

    Hessel R, Asch T. 2003. Modelling gully erosion for a small catchment on the Chinese Loess Plateau[J]. Catena, 54 (1): 131~146.

    Hu Z Q, Shen Z J, Xie D Y. 2000a. Research on structural behavior of unsaturated loess[J]. Chinese Journal of Rock Mechanics and Engineering, 19 (6): 775~779.

    Hu Z Q, Shen Z J, Xie D Y. 2000b. Microstructure and inundation of unsaturated loess[J]. Journal of Nanjing Hydraulic Research Institute, (2): 68~71.

    Jefferson I F, Mavlyanova N, O'HaraDhand K, et al. 2004. The engineering geology of loess ground: 15 tasks for investigators the Mavlyanov programme of loess research[J]. Eng. Geol., 74 : 33~37.

    Liu D S. 1978. Geologic environment of loess in China[J]. Chinese Science Bulletin, 23 : 1~8.

    Liu Y, Fu B J, Lü Y H, et al. 2012. Hydrological responses and soil erosion potential of abandoned cropland in the Loess Plateau, China[J]. Geomorphology, 138 (1): 404~414.

    Muxart T, Billard A, Wang J T, et al. 1994. Variation in runoff on steep, unstable slopes near Lanzhou, China: Initial results using rainfall simulation[A]// Kirkby M J. Process models and theoretical geomorphology[M]. Chichester: Wiley, 337~355.

    Shroder J F, Schettler M J, Weihs B J. 2011. Loess failure in northeast Afghanistan[J]. Physics and Chemistry of the Earth, 36 (16): 1287~1293.

    Sun J M. 2002. Provenance of loess material and formation of loess deposits on the Chinese Loess Plateau[J]. Earth and Planetary Science Letters, 203 (3—4): 845~859.

    Tu X B, Kwong A K L, Dai F C, et al. 2009. Field monitoring of rainfall infiltration in a loess slope and analysis of failure mechanism of rainfall induced landslides[J]. Engineering Geology, 105 (1-2): 134~150.

    Wang G L, Zhang M S, Su T M, et al. 2011. Collapse failure modes and Dem numerical simulation for loess slopes[J]. Journal of Engineering Geology, 19 (4): 541~549.

    Wang J J, Liang Y, Zhang H P, et al. 2014. A loess landslide induced by excavation and rainfall[J]. Landslides, 11 (1): 141~152, DOI: 10.1007/s10346~013~0418~0.

    Wang M, Bai X H. 2006. Collapse property and microstructure of loess[A]//Advances in unsaturated Soil, Seepage and Environmental Geotechnics[C]. ASCE, 111~118.

    Wang M, 2010. Study on structure of collapsible loess in China[Doctorate Thesis][D]. Taiyuan: Taiyuan University of Technology, 1~123.

    Xu L, Dai F C, Thamb L G, et al. 2011. Field testing of irrigation effects on the stability of a cliff edge in loess, northwest China[J]. Engineering Geology, 120 (1—4): 10~17.

    Zhang M H, Xie Y L, Liu B J. 2006. Analysis of shear strength characteristics of loess during moistening process[J]. Rock and Soil Mechanics, 27 (7): 1995~1200.

    Zhang M S, Dong Y, Sun P P, et al. 2011. Risk analysis and control of the Zhaojia'an landslide through controlling water levels[J]. Hydrogeology and Engineering Geology, 38 (1): 123~128.

    Zhang M S, Dong Y, Sun P P. 2012. Impact of reservoir impoundmentcaused groundwater level changes on regional slope stability: A case study in the Loess Plateau of western China[J]. Environmental Earth Science, 66 (6): 1715~1725.

    Zhang Y S, Qu Y X. 2005. Cements of sand loess and their cementation in north Shaanxi and west Shanxi[J]. Journal of Engineering Geology, 13 (1): 18~28.

    Zhang Y S, Qu Y X. 2004. Quantitative research on clay mineral composition of the Malan loess form the Loess Plateau in China[J]. Geological Review, 50 (5): 530~537.

    Zhou Y X, Zhang D X, Zhou X D. 2010. Undrained consolidation triaxial test for flow sliding mechanism of loess landslides[J]. Journal of Engineering Geology, 18 (1): 72~77.

    胡再强, 沈珠江,谢定义. 2000a. 非饱和黄土的结构性研究[J]. 岩石力学与工程学报, 19 (6): 775~779.

    胡再强, 沈珠江,谢定义. 2000b. 非饱和黄土的显微结构与湿陷性[J]. 水利水运科学研究, (2): 68~71.

    刘东生. 1978. 中国黄土的地质环境[J]. 科学通报, 23 : 1~8.

    王根龙, 张茂省,苏天明,等. 2011. 黄土崩塌破坏模式及离散元数值模拟分析[J]. 工程地质学报, 19 (4): 541~549.

    王梅. 2010. 中国湿陷性黄土的结构性研究[博士学位论文][D]. 太原: 太原理工大学, 1~123.

    张茂花, 谢永利,刘保健. 2006. 增湿时黄土的抗剪强度特性分析[J]. 岩土力学, 27 (7): 1995~1200

    张茂省, 董英,孙萍萍,等. 2011. 基于水位的赵家岸滑坡风险分析与控制[J]. 水文地质工程地质, 38 (1): 123~128.

    张永双, 曲永新. 2005. 陕北晋西砂黄土的胶结物与胶结作用研究[J]. 工程地质学报, 13 (1): 18~28.

    张永双, 曲永新. 2004. 黄土高原马兰黄土黏土矿物的定量研究[J]. 地质论评, 50 (5): 530~537.

    周永习, 张得煊, 周喜德. 2010. 黄土滑坡流滑机理的实验研究[J]. 工程地质学报, 18 (1): 72~77.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索
    Article views (3286) PDF downloads(600) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint