Volume 23 Issue 1
Feb.  2015
Turn off MathJax
Article Contents
LEI Qiyun, CHAI Chizhang, MENG Guangkui, DU Peng, WANG Yin. 2015: TECTONIC ACTIVITY HISTORY BASED METHOD FOR ENGINEERING SAFETY DISTANCE TO ACTIVE FAULT. JOURNAL OF ENGINEERING GEOLOGY, 23(1): 161-169. doi: 10.13544/j.cnki.jeg.2015.01.023
Citation: LEI Qiyun, CHAI Chizhang, MENG Guangkui, DU Peng, WANG Yin. 2015: TECTONIC ACTIVITY HISTORY BASED METHOD FOR ENGINEERING SAFETY DISTANCE TO ACTIVE FAULT. JOURNAL OF ENGINEERING GEOLOGY, 23(1): 161-169. doi: 10.13544/j.cnki.jeg.2015.01.023

TECTONIC ACTIVITY HISTORY BASED METHOD FOR ENGINEERING SAFETY DISTANCE TO ACTIVE FAULT

doi: 10.13544/j.cnki.jeg.2015.01.023
Funds:

  • Received Date: 2014-01-08
  • Rev Recd Date: 2014-05-22
  • Publish Date: 2015-02-25
  • In essence, how much the engineering safety distance to active fault belongs the fracture-resistance problem. Aim is to reduce damage to the building due to occurrence of the active fault rupture in the future. Not all active faults can produce surface rupture. The seismo-active fault is the object of engineering avoidance. Researchers suggest many engineering distances to active fault using different methods. Whether these distances are suitable for a particular active fault still needs to conduct specialized research about this active fault. This paper respectively uses Helan Mountain piedmont fault and Yinchuan buried fault for an example. It studies the tectonic history of the active faults using the basic research method for active faults. It uses the past to predict the future of the active fault. The results of this study provide the basis for the active fault avoidance. To the exposed active fault, the first work is to identify whether it is a seismo-active fault using geological mapping, trenching. Then it is to determine the location of the engineering active fault avoidance according to recurrence characteristics of paleoearthquake events and fault scarp landscape in situ. The width of the fault zone in trench and the width of fault scarps can be used as a reference engineering safe distance from the active fault. For buried active faults, the location of the fault should first be positioned through various means. The results of trenching and drilling are to identify capable active faults and to analyze the tectonic activity history of the fault. The situ recurrence characteristics of the paleoearthquake events and the fault throw changes of different sedimentary strata at different depths in drilling profiles can be used to predict the future location of surface rupture. Location of the fault plane extended at the surface can be the occurrence location of the next earthquake surface rupture. It is the reference point to engineering safe distance. Through analysis, the distance of 15m that was given by previous researchers from statistics can be applied to Helan Mountain piedmont fault and Yinchuan buried fault. The engineering safety distance to Yinchuan buried active fault is 40m if the maximum positioning error is taken into account.
  • loading
  • Chai C Z, Meng G K, Du P, et al. 2006. Comprehensive multilevel exploration of buried active fault: An example of Yinchuan buried active fault[J]. Seismology and Geology, 28 (4): 536~546.

    China Earthquake Administration. Surveying and Prospecting of Active Fault(DB/T 15-2009)[S]. 2009. Beijing: Standards Press of China.

    Dai S H, Ma S L, Pan Y S, et al. 2006. Experimental study on rupture propagation along buried strike-slip fault[J]. Seismology and Geology, 28 (4): 635~645.

    Deng Q D, et al. 1992. Research of active fault in evaluating engineering safety and assessing amount of displacement[A]//Research on Active Fault(Ⅱ)[C]. Beijing: Seismological Press.

    Dong J C. 1992. Discussion on the influences of site faults in planned construction in seismic area to buildings[J]. Geotechnical Investigation and Surveying, (4): 12~15.

    Dong J C. 1999. Brief introduction to the stipulations related safety distance from earthquake causative fault[J]. Earthquake Resistant Engineering, (2): 14~16.

    Guo A N. 2000. Statistical research on relation between surface fault width of strong earthquake and magnitude[J]. Northwestern Seismological Journal, 22 (3): 301~305.

    Guo E D, Feng Q M, Bo J S, et al. 2001. Seismic test of soil site ruptures under fault displacement[J]. Earthquake Engineering and Engineering Vibration, 21 (3): 145~149.

    Han Z J, Ran Y K, Xu X W. 2002. Primary study on possible width and displacement of future surface rupture zone produced by buried active fault[J]. Seismology and Geology, 24 (4): 484~494.

    Hu P, Ding Y H, Cai Q P, et al. 2011. Centrifuge modeling on the behavior of coseismic fault dislocation in the Quaternary stratum[J]. Chinese Journal of Geophysics, 54 (9): 2294~2301.

    Jiang P, Liang X H. 1998. Some problems and study results in engineering earthquake practice[J]. Journal of Engineering Geology, 6 (1): 1~23.

    Kelson K, Kang K H, Page W D, et al. 2011. Representative styles of deformation along the Chelungpu fault from the 1999 Chi Chi(Taiwan) earthquake: Geomorphic characteristic and response of manmade structures[J]. Bull. Seism. Soc. Am., 91 (5): 930~952.

    Lei Q Y, Meng G K, Chai C Z, et al. 2010. Primary study on problems of engineering safety distance of the Yinchuan buried active fault[J]. Earthquake Research in China, 26 (3): 314~321.

    Li X J, Zhao L, Li Y Q. 2009. Simulation of fault movement induced rupture process of overlaying soil of bedrock[J]. Chinese Journal of Rock Mechanics and Engineering, 28 (S1): 2703~2707.

    Li X D, Zheng J T, Liao Q W. 2000. Ground deformation of the ChiChi earthquake and problems of no or limited construction on active faults[A]//Collection Papers of the 8 Taiwan Geophysics Meeting, Taibei[C]. Taibei: 669~675.

    Li X T. 1989. Engineering activities fracture criterion and countermeasures[J]. Hydrogeology & Engineering Geology, (1): 17~22.

    Liu S H, Dong J C, Xun G M, et al. 2005. Influence on different overburden soils due to bedrock fracture[J]. Chinese Journal of Rock Mechanics and Engineering, 24 (11): 1868~1874.

    Liu X Z, Masanori H. 2004. Experiments on rupture propagation of active faults in soil[J]. Chinese Journal of Geotechnical Engineering, 26 (3): 425~427.

    Liu Y, Wang A G, Li M Y. 2006. Distance of the Daliushu dam, Heishanxia, the Yellow river evading active fault F201[J]. Journal of Seismological Research, 29 (4): 379~385.

    Luo G Y, Wu H W, Cai Q P. 2010. Centrifuge experimental study of deformation characteristics of overlying sand induced by fault rupture[J]. Chinese Journal of Rock Mechanics and Engineering, 29 (8): 1649~1656.

    Ma D H, Li G, Qian J R. 2006. Probability assessment of land use suitability with ground surface ruptures induced by strong earthquakes[J]. Journal of Tsinghua University(Science & Technology), 46 (3): 309~312.

    Ministry of Construction of the People's Republic of China, General Administration of Quality Supervision, Inspection and Quarantine of the People's Republic of China. 2010. Code for seismic design of buildings(GB 50011-2010)[S]. Beijing: China Architectural & Building Press.

    Ran H L, Zhou B G. 2004. Probability assessment of potential ground offset along strike-slip engineering active fault[J]. Journal of Engineering Geology, 12 (1): 93~97.

    Roth W H, Scott R F, Austin I. 1981. Centrifuge modeling of fault propagation through alluvial soils[J]. Geophysical Research Letters, 8 (6): 561~564.

    Slemmons D B. 1957. Geological effects of the Dixie valey—fairview peak, Nevada, Earthquakes of December 16, 1954[J]. Seism. Soc. Am. Bul1., 47 (4): 353~375.

    Tang M X. 1999. Study and recommend on engineering safe distance from active faults[J]. Hydrogeology & Engineering Geology, (3): 27.

    Tang M X. 1999. Study on the active faults safe distance[J]. Eearthquake Resistant Engineering, (1): 44~46, 48.

    The Research Group of Nearfault Site. 1988. Evaluation for seismic design of nearfault site[R]. Beijing: Office of Earthquakeproof, Ministry of Construction.

    The Research Group on Active Fault System around Ordos Massif, SSB. 1988. Active fault system around ordos massif[M]. Beijing: Seismological Press.

    Wang A G, Ma W, Shi Y C. 2005. Study on the potential earthquake deformation of active fault and the safe distance of important project site to active fault[J]. Journal of Seismological Research, 28 (4): 359~364.

    Wang Z Q et al. 1983. Introduction to earthquake engineering geology[M]. Beijing: Seismological Press.

    Xu X W, Wen X Z, Ye J Q, et al. 2008. The Ms8.0 Wenchuan earthquake surface ruptures and its seismogenic structure[J]. Seismology and Geology, 30 (3): 597~629.

    Xu X W, Yu G H, Ma W T, et al. 2002. Evidence and methods for determining the safety distance from the potential earthquake surface rupture on active fault[J]. Seismology and Geology, 24 (4): 470~483.

    Zhang Y S, Sun P, Shi J S, et al. 2010. Investigation of rupture influenced zones and their corresponding safe distances for reconstruction after 5.12 Wenchuan earthquake[J]. Journal of Engineering Geology, 18 (3): 312~319.

    Zhou Q, Zhou B G, Ran H L. 2006. Comparative study on surface rupture of faults in different soil mass[J]. Technology for Earthquake Disaster Prevention, 1 (3): 225~233.

    Zhou Q, Xu X W, Yu G H, et al. 2008. Investigation on widths of surface ruputure zones of the M8.0 Wenchuan earthquake, Sichuan province, China[J]. Seismology and Geology, 30 (3): 778~788.

    柴炽章, 孟广魁, 杜鹏,等. 2006. 隐伏活动断层的多层次综合探测——以银川隐伏活动断层为例[J]. 地震地质, 28 (4): 536~546.

    场地断裂课题研究小组. 1988. 场地断裂工程抗震评价研究报告[R]. 北京: 建设部抗震办公室.

    代树红, 马胜利, 潘一山,等. 2006. 隐伏走滑断层破裂扩展特征的实验研究[J]. 地震地质, 28 (4): 635~645.

    邓起东, 等. 1992. 活动断裂工程安全评价和位错量的定量估计[A]//活动断裂研究(2)[C]. 北京: 地震出版社.

    董津城. 1992. 地震区规划建设中场地断裂对建筑物影响问题的探讨[J]. 工程勘察, (4): 12~15.

    董津城. 1999. 发震断裂的安全距离规定简介[J]. 工程抗震, (2): 14~16.

    郭安宁. 2000. 强震地表破裂宽度与震级的统计关系研究[J]. 西北地震学报, 22 (3): 301~305.

    郭恩栋, 冯启民,薄景山,等. 2001. 覆盖土层场地地震断裂试验[J]. 地震工程与工程振动, 21 (3): 145~149.

    国家地震局鄂尔多斯活动断裂系课题组. 1988. 鄂尔多斯周缘活动断裂系[M]. 北京: 地震出版社.

    韩竹军, 冉勇康, 徐锡伟. 2002. 隐伏活动断层未来地表破裂带宽度与位错量初步研究[J]. 地震地质, 24 (4): 484~494.

    胡平, 丁彦慧, 蔡奇鹏,等. 2011. 第四纪地层中断层同震错动行为的离心机试验研究[J]. 地球物理学报, 54 (9): 2294~2301.

    蒋溥, 梁小华. 1998. 关于工程地震实践中若干问题[J]. 工程地质学报, 6 (1): 1~23.

    雷启云, 孟广魁, 柴炽章,等. 2010. 银川隐伏活断层工程避让问题初步研究[J]. 中国地震, 26 (3): 314~321.

    李锡堤, 郑锦桐, 廖启雯. 2000. 921集集大地震的地盘变形现象及断层禁限建问题[A]//第8届台湾地区地球物理研讨会论文集[C]. 台北: 669~675.

    李小军, 赵雷, 李亚琦. 2009. 断层错动引发基岩上覆土层破裂过程模拟[J]. 岩石力学与工程学报, 28 (增1): 2703~2707.

    李兴唐. 1989. 工程活动断裂判据与对策[J]. 水文地质工程地质, (1): 17~22.

    刘守华, 董津城, 徐光明,等. 2005. 地下断裂对不同土质上覆土层的工程影响[J]. 岩石力学与工程学报, 24 (11): 1868~1874.

    刘学增, 滨田政则. 2004. 活断层破坏在土体中传播的试验研究[J]. 岩土工程学报, 26 (3): 425~427.

    柳煜, 王爱国, 李明永. 2006. 大柳树高坝F201断层避让距离研究[J]. 地震研究, 29 (4): 379~385.

    骆冠勇, 吴宏伟, 蔡奇鹏. 2010. 地层错动引起的上覆砂层变形特性的离心试验研究[J]. 岩石力学与工程学报, 29 (8): 1649~1656.

    马东辉, 李刚, 钱稼茹. 2006. 强震地面断裂时土地利用适宜性的概率评估[J]. 清华大学学报(自然科学版), 46 (3): 309~312.

    冉洪流, 周本刚. 2004. 地表潜在断错位移的概率评价方法[J]. 工程地质学报, 12 (1): 93~97.

    汤淼鑫. 1999. 活动断裂安全距离的研究[J]. 工程抗震, (1): 44~46, 48.

    汤淼鑫. 1999. 活动断裂安全距离的研究及建议[J]. 水文地质工程地质, (3): 27.

    王爱国, 马巍, 石玉成. 2005. 活动断裂地震变形与重大工程场地安全距离研究[J]. 地震研究, 28 (4): 359~364.

    王钟琦等. 1983. 地震工程地质导论[M]. 北京: 地震出版社.

    徐锡伟, 闻学泽, 叶建青,等. 2008. 汶川M 8.0地震地表破裂带及其发震构造[J]. 地震地质, 30 (3): 597~629.

    徐锡伟, 于贵华, 马文涛,等. 2002. 活断层地震地表破裂“避让带”宽度确定的依据与方法[J]. 地震地质, 24 (4): 470~483.

    张永双, 孙萍, 石菊松,等. 2010. 汶川地震地表破裂影响带调查与建筑场地避让宽度探讨[J]. 工程地质学报, 18 (3): 312~319.

    中国地震局. 2009. 活断层探测(DB/T 15-2009)[S]. 北京: 中国标准出版社.

    中华人民共和国住房与城乡建设部, 国家质量监督检验检疫总局. 2010. 建筑抗震设计规范(GB50011-2010)[S]. 北京: 中国建筑工业出版社.

    周庆, 徐锡伟, 于贵华,等. 2008. 汶川8.0级地震地表破裂带宽度调查[J]. 地震地质, 30 (3): 778~788.

    周庆, 周本刚, 冉洪流. 2006. 不同土质条件下断层地表破裂对比研究[J]. 震灾防御技术, 1 (3): 225~233.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索
    Article views (3778) PDF downloads(600) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint