Volume 23 Issue 5
Oct.  2015
Turn off MathJax
Article Contents
Citation: LUO Xiaojie. 2015: FURTHER DISCUSSION ON MECHANISM OF COVERED KARST GROUND COLLAPSE. JOURNAL OF ENGINEERING GEOLOGY, 23(5): 886-895. doi: 10.13544/j.cnki.jeg.2015.05.009


doi: 10.13544/j.cnki.jeg.2015.05.009

  • Received Date: 2015-05-18
  • Rev Recd Date: 2015-08-26
  • Publish Date: 2015-10-25
  • In order to better provide a theoretical basis for the treatment and prevention of the covered karst collapse(CKGC),according to the differences of material composition, geological structure, physical and mechanical properties of overburden on karst, for the first time, CKGC is divided into three types of mechanism, which are respectively called by hourglass type collapse, soil-cave type collapse and soft soil flow type collapse. In the distribution area of sandy soil, hourglass type collapse is caused by sand particles loss to the karst channels and karst caves because external factors triggering. Gravity and effective space provided by karst are necessary conditions for the occurrence of hourglass type collapse, and the role of groundwater accelerates the occurrence and shortens the process of hourglass type collapse. The ground subsidence phenomenon caused by soil-cave roof arching failure is called soil-cave type collapse occurring in clay and dense sand soil. The natural soil-cave is formed by three ways of the surface and groundwater erosion action, sand loss and soft soil flow. The roof of soil-cave is stable in the period of the formation and development of soil-cave, and ground subsidence occurs when the cave roof arching failure by triggering of external factors. The soil-cave type collapse has the characteristics of concealment and burst. The ground subsidence phenomenon caused by the soft soil flow is called as soft soil flow type collapse, is the result of the soft soil loss through karst channel and cave. The triggering factors of CKGC include groundwater action(vertical and horizontal seepage and underground water level frequent fluctuation at the soil/rock interface),external load(dynamic load and static load) and soil-cave roof resistance reduction(strength and thickness decrease and structure destruction of the roof).These external factors trigger the occurrence of CKGC.
  • loading
  • Chen G L. 1994. Karst collapse of ground soil genesis, prevention and remediation[M]. Beijing: China Railway Publishing House:76~94.

    Chen M X. 2002. Cause analysis and quasi-quantitative prediction on the collapse of karst overburden[J]. Chinese Journal of Rock Mechanics and Engineering, 21 (2): 285~289.

    Cheng X,Huang R Q. 2002. Geological conceptive models of karst collapse[J]. Hydrogeology & Engineering Geology, 6:30~34.

    Dai Q L. 1991. On the new Genesis of karst collapse in mining area-the theory of resonance[J]. Coal Geology of China, 3 (3): 66~68.

    Dai Q L. 1994. The formation mechanism and control of karst collapse[J]. Coal Geology of China, 6 (2): 59~63.

    Fan S K. 2006. A discussion on karst collapse in Wuhan(Hubei)[J]. Resources Environment & Engineering, 20 (S): 608~616.

    Hou C Q,Dong M S,Pang H P. 2013. Research on genesis and mechanics of land collapse in incompact soil[J]. Journal of Hefei University of Technology, 36 (1): 63~67.

    Hu Y B,Liu G R,Xiao S D,et al. 2007. Mechanism of a compound karst surface collapse: a case study in Fenghuo village of Wuhan City[J]. Geological Science and Technology Information, 26 (1): 96~100.

    Jia L,Meng Y,Guan Z D. 2014. Evolution and numerical simulation of a karst soil cave[J]. Carsologica Sinica, 33 (3): 294~298.

    Jia S X,Ma X H. 1994. Genetic mechanism and forecast of karst surface collapse in Wuhan urban area[J]. The Chinese Journal of Geological Hazard and Control, 5 (S): 103~108.

    Jiang X Z,Lei M T,Guan Z D. 2012. Formation mechanism of karst soil-void in single-layer soil structure condition[J]. Carsologica Sinica, 31 (4): 426~432.

    Kang Y R. 1984. Classification of land collapses in karst regions[J]. Carsologica Sinica, 3 (2): 146~155.

    Kang Y R. 1989. On the mechanism of karst collapses[J]. Geology of Guangxi, 2 (2): 83~90.

    Kang Y R. 1992. Collapse-causing models in karstic collapse process[J]. Hydrogeology & Engineering Geology, 19 (4): 32~34,46.

    Lei M T,Jiang X Z,Li Y. 1993. Model test of karst collapse—Taking Wuchang as an example[J]. Journal of Geological Hazards and Environment Preservtion, 4 (2): 39~44.

    Li Q Y. 2009. Further study on formation mechanism of karst collapse[J]. The Chinese Journal of Geological Hazard and Control, 20 (3): 52~55.

    Liu C L,He K Q. 1993. New exploration on karst collapse mechanism and it prediction model[J]. Journal of Hebei College of Geology, 16 (3): 264~270.

    Liu G R,Cheng B Y. 2001. Classification and formation mechanism of karst collapse and its controlling approach[J]. Journal of Engineering Geology, 9 (4): 414~417.

    Liu X Y,Ma Z X,Yang Y G,et al. 2006. Charactoristics of ground collapses and control counterueasures in Yichun urban area, Jiangxi province[J]. The Chinese Journal of Geological Hazard and Control, 18 (2): 89~94.

    Luo X J,Luo S J. 2009. Cause analysis and disposal measures discussion of ground collapse occurring inner Hannan Changjiang river dike in Wuhan[J]. Resources Environment & Engineering, (S2):75~79.

    Luo X J.2013a. Features of the shallow karst development and control of karst collapse in Wuhan[J]. Carsologica Sinica, 32 (4): 419~432.

    Luo X J.2013b. Study on city karst and geo-history landslide[M]. Wuhan: China University of Geosciences Press:44~51.

    Su Y,Zeng K Q,Chen M Z. 2007. Formation mechanism of the karst soil cave collapse in Guilin and its treatment measures[J]. Mineral Resources and Geology, 21 (6): 692~694.

    Sun J H. 2011. Critical parameter model test and numerical simulation research of karst collapse in the area of covered karst[Thesis of master][D]. Chengdu: Southwest Jiaotong University.

    Wang B,He K Q. 2006. Study on limit equilibrium height expression of critical soil cave of karst collapse[J]. Rock and Soil Mechanics, 27 (3): 458~462.

    Wang J Q. 2013. Study on cave collapse mechanism and stability in covered karst area[Thesis of master][D]. Guilin: Guilin University of Technology.

    Wei J F,Ma R G,Yang Z Z,et al. 2013. Forming mechanism of soil cave subside in the Fenghuang transformer substation and control measure[J]. Carsologica Sinica, 32 (3): 325~329.

    Wu Y H,Xie C B,Zhu X. 1994. Formation mechanism and prediction and evaluation of karst collapse in Lujia Street region[J]. The Chinese Journal of Geological Hazard and Control, 5 (S1): 118~123.

    Xiang S J,Kang Y R,Liu Z Y,et al. 1986. Karst collapse in Yangzi river Basin[J]. Carsologica Sinica, 5 (4): 256~282.

    Xiao M G. 2005. The forming mechanism and forecast of fatalness about karst subsidence in Guilin City[Doctorate Thesis][D]. Changchun: Jilin University.

    Xu W G,Zhao G R. 1978. Discussion on the cause and prevention of the collapse in Karst mine area[J]. Industrial Minerals and Processing, 4 (18):19~27.

    Xu W G,Zhao G R. 1981. The implication of suction action for ground subsidence in karst mining areas[J]. Geological Review, 27 (2): 174~180, 183

    Xu W G,Zhao G R. 1986. On mechanism of karst collapse[J]. Journal of China Coal Society, 2:1~11.

    Xu W. 1991. Forming process and precaution of karst land collapse in Niuchang, Guizhou[J]. Carsologica Sinica, 10 (3): 214~219.

    Yang L Z,Wang J X. 1997. Karst collapse study's development abroad and domestic present studying situation[J]. The Chinese Journal of Geological Hazard and Control, 8 (S1): 6~10.

    Yu Z W,Ran J,Zhang Y A. 2010. Analysis of karst subsidence and preventive measures in geotechnical engineering investigation in Wuhan area[J]. Science and Technology Innovation Herald, (31):114.

    Zhang G H. 2008. The characteristic analysis of earthquake secondary geological disasters in Ruichang City of Jiangxi Province[J]. Journal of East China Institute of Technology(Natural Science Edition), 31 (2): 140~145.

    Zhang L F,Zeng X S,Yao Y S,et al. 2007. Review on karst collapse in China[J]. The Chinese Journal of Geological Hazard and Control, 18 (3): 126~130.

    Zhang T L,Zhou A G,Feng X M,et al. 2011. Study on distribution characteristics of ground collapse in Nanjing City and its countermeasures[J]. China Safety Science Journal, 21 (3): 3~8.

    Zheng X C,Wei Z Y. 2004. Analysis on the inducing factors of karst collapse in Wuhan City[J]. Urban Geotechnical Investigation & Surveying,(1): 15~19.

    Zheng X Z. 2009. Research on genetic mechanism and risk evaluation of the karst collapse in Guanghua Basin[Thesis of master][D]. Changsha: Central South University.

    Zuo P Y,Zhao J Q,Qian Z H. 1981. Doubts about the explanation of ground subsidence from the concept of suction action[J]. Geological Review, 27 (3): 243~248.

    Zuo P Y. 1987. On the process and mechanism of land collapse in karst terrains[J]. Carsologica Sinica, 6 (1): 69~77.

    陈国亮. 1994. 岩溶地面塌陷的成因与防治[M]. 北京:中国铁道出版社: 76~94.

    陈明晓. 2002. 岩溶覆盖层塌陷的原因分析及其半定量预测[J]. 岩石力学与工程学报, 21 (2): 285~289.

    程星,黄润秋. 2002. 岩溶塌陷的地质概化模型[J]. 水文地质工程地质, 6:30~34.

    代群力. 1991. 岩溶矿区地面塌陷成因新说-共振论[J]. 中国煤田地质, 3 (3): 66~68.

    代群力. 1994. 论岩溶地面塌陷的形式机制与防治[J]. 中国煤田地质, 6 (2): 59~63.

    范士凯. 2006. 武汉(湖北)地区岩溶地面塌陷[J]. 资源环境与工程, 20 (增刊): 608~616.

    侯超群,董满生,逄焕平. 2013. 松散土体型地面塌陷成因分析及机理研究[J]. 合肥工业大学学报(自然科学版), 36 (1): 63~67.

    胡亚波,刘广润,肖尚德,等. 2007. 一种复合型岩溶地面塌陷的形成机理——以武汉市烽火村塌陷为例[J]. 地质科技情报, 26 (1): 96~100.

    贾龙,蒙彦,管振德. 2014. 岩溶土洞演化及其数值模拟分析[J]. 中国岩溶, 33 (3): 294~298.

    贾淑霞,马霄汉. 1994. 武汉市区岩溶地面塌陷成因机理与预测研究[J]. 中国地质灾害与防治学报, 5 (增刊): 103~108.

    蒋小珍,雷明堂,管振德. 2012. 单层土体结构岩溶土洞的形成机理[J]. 中国岩溶, 31 (4): 426~432.

    康彦仁. 1984. 试论岩溶地面塌陷的类型划分[J]. 中国岩溶, 3 (2): 146~155.

    康彦仁. 1989. 岩溶塌陷的形成机制[J]. 广西地质, 2 (2): 83~90.

    康彦仁.1992. 论岩溶塌陷形成的致塌模式[J]. 水文地质工程地质, 19 (4): 32~34,46.

    雷明堂,蒋小珍,李瑜. 1993. 岩溶塌陷模型试验——以武昌为例[J]. 地质灾害与环境保护, 4 (2): 39~44.

    李前银. 2009. 再论岩溶塌陷的形成机制[J]. 中国地质灾害与防治学报, 20 (3): 52~55.

    刘广润,程伯禹. 2001. 岩溶塌陷的类型、成因机制及防治途径-兼论武汉市岩溶塌陷勘查工作要点[J]. 工程地质学报, 9 (4): 414~417.

    刘细元,马振兴,杨永革,等. 2006. 江西省宜春城区地面塌陷特征及防治建议[J]. 中国地质灾害与防治学报, 17 (2): 89~94.

    刘长礼,贺可强. 1993. 岩溶地面塌陷的机理分析及其预测模型[J]. 河北地质学院学报, 16 (3): 264~270.

    罗小杰,罗世杰. 2009. 武汉市汉南区长江干堤内地面塌陷成因分析与处置措施探讨[J]. 资源环境与工程,(S2):75~79.

    罗小杰.2013a.武汉地区浅层岩溶发育特征与岩溶塌陷灾害防治[J]. 中国岩溶, 32 (4): 419~432.

    罗小杰.2013b.城市岩溶与地史滑坡研究[M]. 武汉:中国地质大学出版社:44~51.

    苏阳,曾克强,陈孟芝. 2007. 桂林市岩溶土洞塌陷的形成机制及治理措施[J]. 矿产与地质, 21 (6): 692~694.

    孙金辉. 2011. 覆盖型岩溶塌陷临界参数模型试验与数值模拟研究[硕士学位论文][D]. 成都:西南交通大学.

    王滨,贺可强. 2006. 岩溶塌陷临界土洞的极限平衡高度公式[J]. 岩土力学, 27 (3): 458~462.

    王建庆. 2013. 覆盖型岩溶区土洞塌陷机制及其稳定性研究[硕士学位论文][D]. 桂林:桂林理工大学.

    韦俊发,麻荣广,杨彰智,等. 2013. 广西来宾凤凰变电站土洞塌陷形成机理及其治理[J]. 中国岩溶, 32 (3): 325~329.

    吴永华,谢春波,朱洵. 1994. 陆家街地区岩溶塌陷形成机制及预测评价[J]. 中国地质灾害与防治学报, 5 (S1): 118~123.

    项式钧,康彦仁,刘志云,等. 1986. 长江流域的岩溶塌陷[J]. 中国岩溶, 5 (4): 256~282.

    肖明贵. 2005. 桂林市岩溶塌陷形成机制与危险性预测[博士学位论文][D]. 长春:吉林大学.

    徐卫国,赵桂荣. 1978. 试论岩溶矿区地面塌陷的成因及防治设想[J]. 化工矿山技术, 4 (18):19~27.

    徐卫国,赵桂荣. 1981. 试论岩溶矿区地面塌陷的真空吸蚀作用[J]. 地质论评, 27 (2): 174~180,183.

    徐卫国,赵桂荣. 1986. 论岩溶塌陷形成机理[J]. 煤炭学报, 2:1~11.

    徐文. 1991. 贵州牛场岩溶地面塌陷的形成及其防治[J]. 中国岩溶, 10 (3): 214~219.

    杨立中,王建秀. 1997. 国外岩溶塌陷研究的发展及我国的研究现状[J]. 中国地质灾害与防治学报, 8 (S1): 6~10.

    于政伟,冉俊,张友安. 2010. 浅析武汉地区岩溶地陷及岩土工程勘察中的预防措施[J]. 科技创新导报,(31): 114.

    张国华. 2008. 江西省瑞昌市地震次生地质灾害特征分析[J]. 东华理工大学学报(自然科学版), 31 (2): 140~145.

    张丽芬,曾夏生,姚运生,等. 2007. 我国岩溶塌陷研究综述[J]. 中国地质灾害与防治学报, 18 (3): 126~130.

    张泰丽,周爱国,冯小铭,等. 2011. 南京市地面塌陷发育特征及防治对策[J]. 中国安全科学学报, 21 (3): 3~8.

    郑先昌,卫中营. 2004. 武汉市岩溶地面塌陷诱发因素分析[J]. 城市勘测,(1): 15~19.

    郑小战. 2009. 广花盆地岩溶地面塌陷灾害形成机理及风险评估研究[硕士学位论文][D]. 长沙:中南大学.

    左平怡,赵济群,钱再华. 1981. 对真空吸蚀作用解释地面塌陷的疑义[J]. 地质论评, 27 (3): 243~248.

    左平怡. 1987. 论岩溶地面塌陷的形成过程与机理[J]. 中国岩溶, 6 (1): 69~77.
  • 加载中


    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索
    Article views (3411) PDF downloads(843) Cited by()
    Proportional views


    DownLoad:  Full-Size Img  PowerPoint