Volume 24 Issue 1
Feb.  2016
Turn off MathJax
Article Contents
JIA Jie, PEI Xiangjun, XIE Rui, JIA Jun, HE Mi. 2016: CENTRIFUGAL SIMULATION EXPERIMENT FOR A LOESS CUTTING-SLOPE AT YANGYA, YAN'AN CITY, NW CHINA. JOURNAL OF ENGINEERING GEOLOGY, 24(1): 1-9. doi: 10.13544/j.cnki.jeg.2016.01.001
Citation: JIA Jie, PEI Xiangjun, XIE Rui, JIA Jun, HE Mi. 2016: CENTRIFUGAL SIMULATION EXPERIMENT FOR A LOESS CUTTING-SLOPE AT YANGYA, YAN'AN CITY, NW CHINA. JOURNAL OF ENGINEERING GEOLOGY, 24(1): 1-9. doi: 10.13544/j.cnki.jeg.2016.01.001

CENTRIFUGAL SIMULATION EXPERIMENT FOR A LOESS CUTTING-SLOPE AT YANGYA, YAN'AN CITY, NW CHINA

doi: 10.13544/j.cnki.jeg.2016.01.001
Funds:

  • Received Date: 2015-04-07
  • Rev Recd Date: 2015-06-05
  • Publish Date: 2016-02-25
  • Artificial excavation is one of the main inducing factors of the landslide formation in loess area. It causes unloading rebound and stress redistribution within the scope of slopes. The process of slope stress rebalancing is followed by slope deformation, which even causes damage. The landslide happened at Baota Zaoyuan town in Yan'an city is a typical induced loess slope excavation. This paper chooses the Yangya landslide as the geological prototype. It uses the type of TLJ-500geotechnical centrifuge for the condition of excavation slope foot test to simulate the deformation and failure process. It studies the characteristics of the displacement of slope deformation before and after the excavation of the slope foot, slope soil pressure response and mechanism of slope deformation and destruction through analysis of the model monitoring data at monitoring points. Results show that partial collapse happens after the slope toe excavation near the international airport face. The slope displacement, shear stress concentration belt and tensile fracture increase progressively from the front part to the inner part of the slope. After excavation, the slope internal zone can produce obvious stress relaxation. The closer to the excavation face the more obvious effect of unloading. Excavation influences a majority of the front and middle parts of the main slope. So there is less or even no effect at the back slope, which means that slope deformation failure mechanism is the typical-steps-back type.
  • loading
  • Bao C G,Rao X B. 1998. Principle of model test the geotechnical centrifuge[J]. Journal of Yangtze River Scientific Research Institute, 15 (2): 1~4.

    Chen C L. 2012. Study on the deformation and failure mechanism of excavated loess slope in Yan'an[D]. Xi'an: Chang'an University.

    Gao C S,Xu G M,Zhang L,et al. 2005. Centrifuge modeling of deformation and failure of slope[J]. Chinese Journal of Geotechnical Engineering, 27 (4): 478~481.

    Gong C M,Cheng Q G,Liu Z P. 2010. Centrifuge model tests on excavation and reinforcement effect of loess slope[J]. Rock and Soil Mechanics, 31 (11): 3481~3486.

    Li M,Zhang G,Lee C F, et at. 2011. Centrifugal model tests on excavation-induced deformation of slopes[J]. Chinese Journal of Geotechnical Engineering, 33 (4): 667~672.

    Lei X Y. 2001. Geo-hazards and human activity at loess plateau[M]. Beijing: Geological Publishing House.

    Liu Y,Huang Q B. 2007. The centrifugal simulation experiment research on the influence of excavation and loading on the characteristics of deformation and destruction of loess slope[J]. Geotechnical Investigation & Surveying,(5): 10~13.

    Mu T P,Zhang G,Zhang J M. 2006. Centrifuge modeling of failures of cohesive soil slopes[J]. Journal of Tsinghua University, 46 (9): 1522~1525.

    Pu J L. 1996. Geotechnical centrifuge model text and its application and evelopment[J]. Chinese Journal of Geotechnical Engineering, 18 (5): 92~94.

    Wang G S. 2000. The progressive failure of slope and the stability analysis[J]. Chinese Journal of Rock Mechanics and Engineering, 19 (1): 29~33.

    Wang M Q,Xu Y. 2001. Discussion of released loads in calculation of excavation by finite element method[J]. Engineering Journal of Wuhan University, 34 (1): 56~59.

    Xu Z J,Lin Z G,Zhang M S. 2007. Loess in China and loess landslides[J]. Chinese Journal of Rock Mechanics and Engineering, 26 (7): 1297~1312.

    Yao Y C,Yao L K, Yuan B Y. 2006. Study of centrifuge model tests on transition effect of cut slopes[J]. Chinese Journal of Geotechnical Engineering, 28 (1): 76~80.

    Zhang G,Wang A X,Mu T P, et al. 2008. Study of stress and displacement fields in centrifuge modeling of slope progressive failure[J]. Rock and Soil Mechanics, 29 (10): 2637~2641.

    Zhang M S,Li T L. 2011. Triggering factors and forming mechanism of loess landslides[J]. Journal of Engineering Geology, 19 (4): 530~540.

    包承纲,饶锡保. 1998. 土工离心模型的试验原理[J]. 长江科学院院报, 15 (2): 1~4.

    陈春利. 2012. 延安地区人工开挖黄土边坡的变形破坏机理研究[D]. 西安: 长安大学.

    高长胜,徐光明,张凌,等. 2005. 边坡变形破坏离心机模型试验研究[J]. 岩土工程学报, 27 (4): 478~481.

    龚成明,程谦恭,刘争平. 2010. 黄土边坡开挖与支护效应的离心模拟试验研究[J]. 岩土力学, 31 (11): 3481~3486.

    李明,张嘎,李焯芬,等. 2011. 开挖对边坡变形影响的离心模型试验研究[J]. 岩土工程学报, 33 (4): 667~672.

    雷祥义. 2001. 黄土高原地质灾害与人类活动[M]. 北京:地质出版社.

    刘悦,黄强兵. 2007. 开挖和堆载作用下黄土边坡变形特征离心试验研究[J]. 工程勘察,(5): 10~13.

    牟太平,张嘎,张建民. 2006. 土坡破坏过程的离心模型试验研究[J]. 清华大学学报, 46 (9): 1522~1525.

    濮家骝. 1996. 土工离心模型试验及其应用的发展趋势[J]. 岩土工程学报, 18 (5): 92~94.

    王庚荪. 2000. 边坡的渐进破坏及稳定性分析[J]. 岩石力学与工程学报, 19 (1): 29~33.

    王敏强,许原. 2001. 有限元分析中开挖释放荷载计算的讨论[J]. 武汉大学学报, 34 (1): 56~59.

    徐张建,林在贯,张茂省. 2007. 中国黄土与黄土滑坡[J]. 岩石力学与工程学报, 26 (7): 1297~1312.

    姚裕春,姚令侃,袁碧玉. 2006. 边坡开挖迁移式影响离心模型试验研究[J]. 岩土工程学报, 28 (1): 76~80.

    张嘎,王爱霞,牟太平,等. 2008. 边坡破坏过程离心模拟试验的应力位移场研究[J]. 岩土力学, 29 (10): 2637~2641.

    张茂省,李同录. 2011. 黄土滑坡诱发因素及其形成机理研究[J]. 工程地质学报, 19 (4): 530~540.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索
    Article views (2417) PDF downloads(579) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint