Volume 24 Issue 1
Feb.  2016
Turn off MathJax
Article Contents
SHEN Lingling, LIU Lianyou, XU Chong, WANG Jingpu. 2016: MULTI-MODELS BASED LANDSLIDE SUSCEPTIBILITY EVALUATIONILLUSTRATED WITH LANDSLIDES TRIGGERED BY MINXIAN EARTHQUAKE. JOURNAL OF ENGINEERING GEOLOGY, 24(1): 19-28. doi: 10.13544/j.cnki.jeg.2016.01.003
Citation: SHEN Lingling, LIU Lianyou, XU Chong, WANG Jingpu. 2016: MULTI-MODELS BASED LANDSLIDE SUSCEPTIBILITY EVALUATIONILLUSTRATED WITH LANDSLIDES TRIGGERED BY MINXIAN EARTHQUAKE. JOURNAL OF ENGINEERING GEOLOGY, 24(1): 19-28. doi: 10.13544/j.cnki.jeg.2016.01.003

MULTI-MODELS BASED LANDSLIDE SUSCEPTIBILITY EVALUATIONILLUSTRATED WITH LANDSLIDES TRIGGERED BY MINXIAN EARTHQUAKE

doi: 10.13544/j.cnki.jeg.2016.01.003
Funds:

  • Received Date: 2014-10-16
  • Rev Recd Date: 2015-03-09
  • Publish Date: 2016-02-25
  • On July 22, 2013, an earthquake of MS6.6 occurred at the junction area of the Minxian and Zhangxian Counties, Gansu Province, China. The earthquake had triggered at least 2330 landslides according to the previous studies. This paper takes seismic intensity Ⅷ zone of the earthquake as the study area. Based on the earthquake induced-landslide inventory interpreted from field investigations and visual interpretation of high-resolution satellite images before and after earthquake, five influence factors of slope, aspect, drainage, lithology and fault are selected. Then the landslide susceptibility of the study area is evaluated under GIS platform by applying fuzzy logic model, information value model and Shannon's entropy integrated information value model separately. Results show: (1)Landslides are prone to occur in the central part of the study area. When closer to drainage, it is more susceptible to landslides. By counting landslides in buffer zones of drainage, it finds that majority landslides occurred in 0~50m zone. The percentage of landslides in 0~100m buffer zone is up to 50% of all. (2)The AUC values of three models are 0.8488(Information value model), 0.8502(Shannon's entropy integrated information value model), 0.7640(Fuzzy logic model). It indicates well performances of information value model and Shannon's entropy integrated information value model, and the modest performance of fuzzy logic model. (3)By comparing the areas of each susceptibility levels and landslides proportions in each susceptibility levels of three models, it finds that each level's area ration in Shannon's entropy integrated information value model tends to normal distribution, and the model also has the highest landslide rations in very high and high susceptibility levels. Shannon's entropy integrated information value model increases each unit's information value which leads to a more obvious result. It demonstrates that Shannon's entropy integrated information value model is more suitable for disaster risk evaluation and emergency risk management.
  • loading
  • Althuwaynee O F,Pradhan B,Lee S. 2012. Application of an evidential belief function model in landslide susceptibility mapping[J]. Computers & Geosciences, 44 : 120~135.

    Bai S,Wang J,Zhang Z,et al. 2012. Combined landslide susceptibility mapping after Wenchuan earthquake at the Zhouqu segment in the Bailongjiang Basin, China[J]. Catena, 99 (4): 18~25.

    Barredo J,Benavides A,Hervás J,et al. 2000. Comparing heuristic landslide hazard assessment techniques using GIS in the Tirajana Basin, Gran Canaria Island, Spain[J]. International Journal of Applied Earth Observation and Geoinformation, 2 (1): 9~23.

    Bonham-Carter G. 1994. Geographic information systems for geoscientists: modelling with GIS[M]. New York: Pergamon.

    Bui D T,Pradhan B,Lofman O,et al. 2012. Spatial prediction of landslide hazards in Hoa Binh province(Vietnam):a comparative assessment of the efficacy of evidential belief functions and fuzzy logic models[J]. Catena, 96 : 28~40.

    Castellanos Abella E A,Van Westen C J. 2008. Qualitative landslide susceptibility assessment by multicriteria analysis: a case study from San Antonio del Sur, Guantánamo, Cuba[J]. Geomorphology, 94 (34): 453~466.

    Dai F C,Yao X,Tan G H. 2007. Landslide susceptibility mapping using support vector machines[J]. Earth Science Frontiers, 14 (6): 153~159.

    Fan L F,Hu R L,Zeng F C,et al. 2012. Application of weighted information value model to landslide susceptibility assessment—a case study of Enshi city, Hubei Province[J]. Journal of Engineering Geology, 20 (4): 508~513.

    Fan Q,Ju N P,Xiang X Q,et al. 2014. Landslides hazards assessment with weights of evidence—A case study in Guizhou, China[J]. Journal of Engineering Geology, 22 (3): 474~481.

    Fawcett T. 2006. An introduction to ROC analysis[J]. Pattern Recognition Letters, 27 (8): 861~874.

    Fell R,Corominas J,Bonnard C,et al. 2008. Guidelines for landslide susceptibility, hazard and risk zoning for land-use planning[J]. Engineering Geology, 102 (34): 85~98.

    Gao K C,Cui P,Zhao C Y,et al. 2006. Landslide hazard evaluation of Wanzhou based on GIS information value method in the Three Gorges Reservoir[J]. Chinese Journal of Rock Mechanics and Engineering, 25 (5): 991~996.

    GLünther A,Reichenbach P,Malet J P,et al. 2013. Tier-based approaches for landslide susceptibility assessment in Europe[J]. Landslides, 10 (5): 529~546.

    Gorsevski P V,Jankowski P,Gessler P E. 2006. An heuristic approach for mapping landslide hazard by integrating fuzzy logic with analytic hierarchy process[J]. Control and Cybernetics, 35 (1): 121~146.

    Guzzetti F,Carrara A,Cardinali M,et al. 1999. Landslide hazard evaluation: an aid to a sustainable development[J]. Geomorphology, 31 : 181~216.

    Hu R L,Fan L F,Wang S S,et al. 2013. Theory and method for landslide risk assessment-current status and future development[J]. Journal of Engineering Geology, 21 (1): 76~84.

    Heckerman D. 2013. Probabilistic interpretations for MYCIN's certainty factors[J]. arXiv preprint arXiv: 1304.3419.http://arxiv.org/abs/1304.3419.

    Lee S,Hwang J,Park I. 2013. Application of data-driven evidential belief functions to landslide susceptibility mapping in Jinbu, Korea[J]. Catena, 100 : 15~30.

    Li S M,Yao S Z,Han Y C,et al. 2008. Position prediction of lead-zinc-silver polymetallic deposits in northwest Hebei based on the fuzzy logic method[J]. Geology in China, 35 (4): 762~769.

    Li Y J,Guo P,Zhao H T,et al. 2013. Application and comparison of two probability models in landslide susceptibility analysis—A case study in Luoyu Valley, Tianshui[J]. Journal of Arid Land Resources and Environment, 27 (2): 198~202.

    Lu X C,Chen T L. 2010. Application of information value model in regional landslide hazard analysis[J]. Guizhou Water Power, 24 (1): 80~83.

    Pradhan B. 2013. A comparative study on the predictive ability of the decision tree, support vector machine and neuro-fuzzy models in landslide susceptibility mapping using GIS[J]. Computers & Geosciences, 51 : 350~365.

    Ruan S Y,Huang R Q. 2001. Application of GIS-BASED information Model on assessment of geological hazrads risk[J]. Journal of Chengdu University of Technology, 28 (1): 89~92.

    Shannon C E. 2001. A mathematical theory of communication[J]. ACM SIGMOBILE Mobile Computing and Communications Review, 5 (1): 3~55.

    Sharma L,Patel N,Ghose M,et al. 2013. Synergistic application of fuzzy logic and geo-informatics for landslide vulnerability zonation—a case study in Sikkim Himalayas, India[J]. Applied Geomatics, 5 (4): 271~284.

    Swets J A. 1988. Measuring the accuracy of diagnostic systems[J]. Science, 240 (4857): 1285~1293.

    Tan L,Chen G,Wang S Y,et al. 2014. Landslide susceptibility mapping based on logistic regression and support vector machine[J]. Journal of Engineering Geology, 22 (1): 56~63.

    Wang Z H,Hu Z W,Zhao W J,et al. 2014. Susceptibility analysis of precipitation-induced landslide disaster-pregnant environmental factors based on the certainty factor probability model—taking the hilly area in Sichuan as example[J]. Journal of Catastrophology, 29 (2): 109~115.

    Xing X W,Hu G D. 2006. The application of fuzzy logic method to gold deposit prediction in Qinling-Songpan area[J]. Journal of Jilin University(Earth Science Edition), 36 (2): 298~304.

    Xu C,Dai F C,Yao X,et al. 2009. GIS-Based landslide susceptibility assessment using analytical hierarchy process in Wenchuan Earthquake region[J]. Chinese Journal of Rock Mechanics and Engineering, 28 (S2): 3978~3985.

    Xu C,Dai F C,Yao X,et al. 2010. GIS platform and certainty factor analysis method based Wenchuan earthquake-induced landslide susceptibility evaluation[J]. Journal of Engineering Geology, 18 (1): 15~26.

    Xu C,Xu X W. 2012. GIS and ANN model for earthquake triggered landslides susceptibility zonation[J]. Geological Science and Technology Information, 31 (3): 116~121.

    Xu C,Dai F C,Xu X W,et al.2012a. GIS-based support vector machine modeling of earthquake-triggered landslide susceptibility in the Jianjiang River watershed, China[J]. Geomorphology, 145 : 70~80.

    Xu C,Xu X W,Dai F C,et al.2012b. Comparison of different models for susceptibility mapping of earthquake triggered landslides related with the 2008 Wenchuan earthquake in China[J]. Computers & Geosciences, 46 : 317~329.

    Xu C,Xu X W,Zheng W J.2013a. Compiling inventory of landslides triggered by Minxian Zhangxian earthquake of July 22, 2013 and their spatial Distribution analysis[J]. Journal of Engineering Geology, 21 (5): 736~749.

    Xu C,Xu X W,Zheng W J.2013b. Landslides triggered by the 2013 Minxian-Zhangxian Gansu Province MS6.6 earthquake and its tectonic analyses[J]. Seismology and Geology, 35 (3): 616~626.

    Xu C,Xu X W,Shyu J B H,et al. 2014. Landslides triggered by the 22 July 2013 Minxian-Zhangxian, China, Mw 5.9 earthquake: Inventory compiling and spatial distribution analysis[J]. Journal of Asian Earth Sciences, 92 : 125~142.

    Yalcin A. 2008. GIS-based landslide susceptibility mapping using analytical hierarchy process and bivariate statistics in Ardesen(Turkey):comparisons of results and confirmations[J]. Catena, 72 (1): 1~12.

    Yilmaz I. 2009. Landslide susceptibility mapping using frequency ratio, logistic regression, artificial neural networks and their comparison: a case study from Kat landslides(Tokat—Turkey)[J]. Computers & Geosciences, 35 (6): 1125~1138.

    Yilmaz I. 2010. Comparison of landslide susceptibility mapping methodologies for Koyulhisar, Turkey: conditional probability, logistic regression, artificial neural networks, and support vector machine[J]. Environmental Earth Sciences, 61 (4): 821~836.

    Zadeh L A. 1965. Fuzzy sets[J]. Information and control, 8 (3): 338~353.

    Zhang J Q,Fan J R,Yan D,et al. 2009. Sensitivity evaluation to the earthquake-induced landslide and collapse: A case study of Beichuan County, Sichuan Province[J]. Journal of Sichuan University(Engineering Science Edition), 41 (3): 140~145.

    Zhao H,Song E X. 2011. Improved information value model and its application in the spatial prediction of landslides[J]. Journal of Civil, Architectural & Environmental Engineering, 33 (3): 38~44.

    Zhao P D. 1994. Statistical prediction of mineral deposit[M]. Beijing: Geological Publishing House.

    Zhao Z,Hou E K,Wang J Z,et al. 2012. Landslide risk management information system for counties: Illustrated with a case study for Ningqiang county[J]. Journal of Engineering Geology, 20 (2): 170~182.

    Zheng W J,Min W,He W G,et al. 2013. Distribution of the related disaster and the causative tectonic of the Minxian-Zhanxian MS6.6 earthquake on July 22, 2013, Gansu, China[J]. Seismology and Geology, 35 (3): 604~615.

    Zhu L F,Wu X C,Yin K L,et al. 2004. Risk zonation of landslide in China based on information content model[J]. Journal of Earth Sciences and Environment, 26 (3): 52~56.

    戴福初,姚鑫,谭国焕. 2008. 滑坡灾害空间预测支持向量机模型及其应用[J]. 地学前缘, 14 (6): 153~159.

    范林峰,胡瑞林,曾逢春,等. 2012. 加权信息量模型在滑坡易发性评价中的应用——以湖北省恩施市为例[J]. 工程地质学报, 20 (4): 508~513.

    范强,巨能攀,向喜琼,等. 2014. 证据权法在区域滑坡危险性评价中的应用——以贵州省为例[J]. 工程地质学报, 22 (3): 474~481.

    高克昌,崔鹏,赵纯勇,等. 2006. 基于地理信息系统和信息量模型的滑坡危险性评价——以重庆万州为例[J]. 岩石力学与工程学报, 25 (5): 991~996.

    胡瑞林,范林峰,王珊珊,等. 2013. 滑坡风险评价的理论与方法研究[J]. 工程地质学报, 21 (1): 76~84.

    李随民,姚书振,韩玉丑,等. 2008. 基于模糊逻辑法的冀西北地区铅锌银多金属矿定位预测[J]. 中国地质, 35 (4): 762~769.

    李亚军,郭鹏,赵洪涛,等. 2013. 两种概率模型在滑坡敏感性分析中的应用及比较——以甘肃省天水市罗玉沟为例[J]. 干旱区资源与环境, 27 (2): 198~202.

    卢晓仓,陈泰霖. 2010. 信息量模型在区域滑坡灾害危险性分析中的应用[J]. 贵州水力发电, 24 (1): 80~83.

    阮沈勇,黄润秋. 2001. 基于GIS的信息量法模型在地质灾害危险性区划中的应用[J]. 成都理工学院学报, 28 (1): 89~92.

    谭龙,陈冠,王思源,等. 2014. 逻辑回归与支持向量机模型在滑坡敏感性评价中的应用[J]. 工程地质学报, 22 (1): 56~63.

    王志恒,胡卓玮,赵文吉,等. 2014. 基于确定性系数概率模型的降雨型滑坡孕灾环境因子敏感性分析——以四川省低山丘陵区为例[J]. 灾害学, 29 (2): 109~115.

    邢学文,胡光道. 2006. 模糊逻辑法在秦岭-松潘成矿区金矿潜力预测中的应用[J]. 吉林大学学报(地球科学版), 36 (2): 298~304.

    许冲,戴福初,姚鑫,等. 2009. GIS支持下基于层次分析法的汶川地震区滑坡易发性评价[J]. 岩石力学与工程学报, 28 (S2): 3978~3985.

    许冲,戴福初,姚鑫,等. 2010. 基于GIS与确定性系数分析方法的汶川地震滑坡易发性评价[J]. 工程地质学报, 18 (1): 15~26.

    许冲,徐锡伟. 2012. 基于GIS与ANN模型的地震滑坡易发性区划[J]. 地质科技情报, 31 (3): 116~121.

    许冲,徐锡伟,郑文俊.2013a.2013年7月22日岷县漳县MS6.6级地震滑坡编录与空间分布规律分析[J]. 工程地质学报, 21 (5): 736~749.

    许冲,徐锡伟,郑文俊,等.2013b.2013年甘肃岷县漳县6.6级地震触发滑坡及其构造分析[J]. 地震地质, 35 (3): 616~626.

    张建强,范建容,严冬,等. 2009. 地震诱发崩塌滑坡敏感性评价——以北川县为例[J]. 四川大学学报(工程科学版), 41 (3): 140~145.

    赵衡,宋二祥. 2011. 滑坡空间预测中信息量模型的改进及应用[J]. 土木建筑与环境工程, 33 (3): 38~44.

    赵鹏大. 1994. 矿床统计预测附本[M]. 北京:地质出版社.

    赵洲,侯恩科,王建智,等. 2012. 县域滑坡灾害风险管理信息系统研发与应用:以陕西省宁强县为例[J]. 工程地质学报, 20 (2): 170~182.

    郑文俊,闵伟,何文贵,等.2013.2013 年甘肃岷县漳县6.6级地震震害分布特征及发震构造分析[J]. 地震地质, 35 (3): 604~615.

    朱良峰,吴信才,殷坤龙,等. 2004. 基于信息量模型的中国滑坡灾害风险区划研究[J]. 地球科学与环境学报, 26 (3): 52~56.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索
    Article views (2354) PDF downloads(604) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint