Volume 24 Issue 1
Feb.  2016
Turn off MathJax
Article Contents
WU Jinghong, JIANG Hongtao, SU Jingwen, SHI Bin. 2016: DFOS-BASED MONITORING ON QUATERNARY SEDIMENTS DEFORMATION AND LAND SUBSIDENCE IN SUZHOU, CHINA. JOURNAL OF ENGINEERING GEOLOGY, 24(1): 56-63. doi: 10.13544/j.cnki.jeg.2016.01.007
Citation: WU Jinghong, JIANG Hongtao, SU Jingwen, SHI Bin. 2016: DFOS-BASED MONITORING ON QUATERNARY SEDIMENTS DEFORMATION AND LAND SUBSIDENCE IN SUZHOU, CHINA. JOURNAL OF ENGINEERING GEOLOGY, 24(1): 56-63. doi: 10.13544/j.cnki.jeg.2016.01.007

DFOS-BASED MONITORING ON QUATERNARY SEDIMENTS DEFORMATION AND LAND SUBSIDENCE IN SUZHOU, CHINA

doi: 10.13544/j.cnki.jeg.2016.01.007
Funds:

  • Received Date: 2014-10-31
  • Rev Recd Date: 2015-04-01
  • Publish Date: 2016-02-25
  • Loose Quaternary deposits are widely distributed in Suzhou, where extracting groundwater has caused a large-scale land subsidence. The land subsidence influences the development of economy. Optical fibers are laid in a 200m borehole drilled in Shengze, Suzhou. Based on the BOTDR and FBG technologies, the Quaternary sediments deformation and land subsidence are long-term monitored. It is showed that Quaternary sediments can be divided into different aquifers(Af) and aquitards(Ad).The main compaction occurs at two thick aquitards which adjacent to the second confined aquifer. In addition, the shorter the distance between the aquitard and the pumping aquifer is,the greater the degree of compression of the aquitard is .The soil layer reaches the maximum compression in summer while a small rebound occurs in winter, showing the conformance with the pore water pressure of the pumping aquifer. We define the compression degree as the ratio of the accumulative compression and the thickness of this layer(i.e.,the unit compression).At this stage the subsidence trend can be judged by compression degree. For the aquitards, there is a tendency shows that Ad2 Ad3 Ad4 Ad1. For the aquifers, the Af2 is the main compaction layer while Af1 and Af3 remain almost constant. DFOS technique provides a very advanced monitoring method for the study of land subsidence mechanism and the evaluation of soil compression deformation potential.
  • loading
  • Bao X,DeMerchant M,Brown A,et al. 2001. Tensile and compressive strain measurement in the lab and field with the distributed Brillouin scattering sensor[J]. Journal of Lightwave Technology, 19 (11): 1698~1704.

    Bell F G,Cripps J C,Culshaw M G. 1986. A review of the engineering behaviour of soils and rocks with respect to groundwater[J]. Geological Society, London, Engineering Geology Special Publications, 3 (1): 1~23.

    Cao W B. 1983. Water-releasing effect of viscous soil in pore confined aquifer system and its significance in resource evaluation[J]. Hydrogeology & Engineering Geology, 20 (4): 8~13.

    Chen C X,Pei S P,Jiao J. 2003. Land subsidence caused by groundwater exploitation in Suzhou City, China[J]. Hydrogeology Journal, 11 (2): 275~287.

    Galloway D L,Hudnut K W,Ingebritsen S E,et al. 1998. Detection of aquifer system compaction and land subsidence using interferometric synthetic aperture radar, Antelope Valley, Mojave Desert, California[J]. Water Resources Research, 34 (10): 2573~2585.

    Garus D,Gogolla T,Krebber K,et al. 1996. Distributed sensing technique based on Brillouin optical-fiber frequency-domain analysis[J]. Optics Letters, 21 (17): 1402~1404.

    Hooper A,Zebker H,Segall P,et al. 2004. A new method for measuring deformation on volcanoes and other natural terrains using InSAR persistent scatterers[J]. Geophysical Research Letters, 31 (23):275~295.

    Hung W C,Hwang C,Chang C P,et al. 2010. Monitoring severe aquifer-system compaction and land subsidence in Taiwan using multiple sensors: Yunlin, the southern Choushui River Alluvial Fan[J]. Environmental Earth Sciences, 59 (7): 1535~1548.

    Hung W C,Hwang C,Liou J C,et al. 2012. Modeling aquifer-system compaction and predicting land subsidence in central Taiwan[J]. Engineering Geology, 148 : 78~90.

    Ikehara M E,Phillips S P. 1994. Determination of land subsidence related to ground-water-level declines using Global Positioning System and leveling surveys in Antelope Valley, Los Angeles and Kern counties, California, 1992[R]. Sacramento, California: U.S. Geological Survey.

    Kersey A D,Davis M A,Patrick H J,et al. 1997. Fiber grating sensors[J]. Journal of Lightwave Technology, 15 (8): 1442~1463.

    Kunisue S,Kokubo T. 2010. In situ formation compaction monitoring in deep reservoirs using optical fibres[J]. IAHS-AISH publication, 368~370.

    Land and Resources of Jiangsu Province. 2007. Suxichang land subsidence monitoring report[R]. Nanjing: Land and Resources of Jiangsu Province.

    Li H N,Li D S,Song G B. 2004. Recent applications of fiber optic sensors to health monitoring in civil engineering[J]. Engineering Structures, 26 (11): 1647~1657.

    Liu F S. 2011. Analysis on developing tendency of land subsidence around Suzhou-Wuxi-Changzhou area as well as its impacts on Beijing-Shanghai high speed railwa[J]. Railway Investigation and Surveying, 37 (1): 33~37.

    Lu Y, Shi B, Xi J, et al. 2014. Field study of BOTDR-based distribution monitoring technology for ground fissures[J]. Journal of Engineering Geology, 22 (1): 8~13.

    Modoni G,Darini G,Spacagna R L,et al. 2013. Spatial analysis of land subsidence induced by groundwater withdrawal[J]. Engineering Geology, 167 : 59~71.

    Pacheco-Martínez J,Hernandez-Marin M,Burbey T J,et al. 2013. Land subsidence and ground failure associated to groundwater exploitation in the Aguascalientes Valley, Mexico[J]. Engineering Geology, 164 : 172~186.

    Poland J F,Davis G H. 1969. Land subsidence due to withdrawal of fluids[J]. Reviews in Engineering Geology, 2 : 187~270.

    Sato H P,Abe K,Ootaki O. 2003. GPS-measured land subsidence in Ojiya City, Niigata prefecture, Japan[J]. Engineering Geology, 67 (4): 379~390.

    Shi X Q, Feng Z X, Yao B K, et al. 2014. Study on the deformation characteristics of soil layers after banning groundwater pumping in Suo W B, Shi B, Zhang W, et al. 2006. Study on calibration of distri buted optical fiber sensors based on BOTDR[J]. Chinese Journal of Scientific Instrument, 27 (9): 985~989.

    Su-Xi-Chang area[J]. Quaternary Sciences, 34 (5): 1062~1071.

    Wang B J,Li K,Shi B,et al. 2009. Test on application of distributed fiber optic sensing technique into soil slope monitoring[J]. Landslides, 6 (1): 61~68.

    Wang G Y, Yu J, Wu S L, et al. 2009. Land subsidence and compression of soil layers in Changzhou area[J]. Geology and Exploration, 45 (5): 612~620.

    Wang W, Xu J, Xu M. 2014. Analysis of subsidence characteristics of coastal region aquifers in Tianjin based on step bench mark data[J]. Ground Water, 36 (4): 26~27.

    Wei G Q, Shi B, Hu S, et al. 2009. Several key problems in tunnel construction monitoring with FBG[J]. Chinese Journal of Geotechnical Engineering, 31 (4): 571~576.

    Wu J H, Zhou C H, Jiang H T, et al. 2014. Physical properties of Quaternary sediment and land subsidence life process in Suzhou[J]. Chinese Journal of Geotechnical Engineering, 36 (9): 1745~1753.

    Wu J Q, Wu S L, Min W, et al. 2014. Review on recent progress of land subsidence control in Suzhou-Wuxi-Changzhou area[J]. Journal of Geology, 38 (2): 319~323.

    Wu Z Y, Yu Q, Zhang Y. 2003. Forming process of earth fissure hazard in the Suzhou-Wuxi-Changzhou area[J]. Hydrogeology & Engineering Geology, 30 (1): 67~72.

    Yang H, Zhang D, Shi B, et al. 2012. Experiments on coupling materials' proportioning of borehole grouting in directly implanted optic fiber sensing[J]. Journal of Disaster Prevention and Mitigation Engineering, 32 (6): 714~719.

    Zhag S Y, Li T, Xia Y. 2008. Study on urban area subsidence monitoring based on InSAR technique[J]. Geomatics and Information Science of Wuhan University, 33 (8): 850~853.

    Zhang D, Shi B, Xu H Z. 2004. The BOTDR-based strain monitoring for tunnel[J]. Journal of Engineering Geology, 12 (4): 422~426.

    曹文炳. 1983. 孔隙承压含水系统中黏性土释水及其在资源评价中的意义[J]. 水文地质工程地质, 20 (4): 8~13.

    江苏省国土资源厅. 2007. 苏锡常地面沉降监测年报[R]. 南京:江苏省国土资源厅.

    刘府生. 2011. 苏锡常区域地面沉降发展趋势及其对京沪高铁的影响分析[J]. 铁道勘察, 37 (1): 33~37.

    卢毅,施斌,席均,等. 2014. 基于 BOTDR 的地裂缝分布式光纤监测技术研究[J]. 工程地质学报, 22 (1): 8~13.

    施小清,冯志祥,姚炳奎,等. 2014. 苏锡常地区深层地下水禁采后土层变形特征分析[J]. 第四纪研究, 34 (5): 1062~1071.

    索文斌,施斌,张巍,等. 2006. 基于 BOTDR 的分布式光纤传感器标定实验研究[J]. 仪器仪表学报, 27 (9): 985~989.

    王光亚,于军,吴曙亮,等. 2009. 常州地区地面沉降及地层压缩性研究[J]. 地质与勘探, 45 (5): 612~620.

    王巍,徐佳,徐鸣. 2014. 基于分层标资料的天津滨海地区含水层沉降特征分析[J]. 地下水, 36 (4): 26~27.

    魏广庆,施斌,胡盛,等. 2009. FBG 在隧道施工监测中的应用及关键问题探讨[J]. 岩土工程学报, 31 (4): 571~576.

    吴静红,周春慧,姜洪涛,等. 2014. 苏州第四纪沉积物物理性质与地面沉降生命过程分析[J]. 岩土工程学报, 36 (9): 1745~1753.

    伍洲云,余勤,张云. 2003. 苏锡常地区地裂缝形成过程[J]. 水文地质工程地质, 30 (1): 67~72.

    武健强,吴曙亮,闵望,等. 2014. 苏锡常地区地面沉降防控最新进展评述[J]. 地质学刊, 38 (2): 319~323.

    杨豪,张丹,施斌,等. 2012. 直埋式光纤传感钻孔注浆耦合材料配合比试验研究[J]. 防灾减灾工程学报, 32 (6): 714~719.

    张丹,施斌,徐洪钟. 2004. 基于 BOTDR 的隧道应变监测研究[J]. 工程地质学报, 12 (4): 422~426.

    张诗玉,李陶,夏耶. 2008. 基于 InSAR 技术的城市地面沉降灾害监测研究[J]. 武汉大学学报(信息科学版), 33 (8): 850~853.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索
    Article views (2550) PDF downloads(413) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint