Volume 24 Issue 1
Feb.  2016
Turn off MathJax
Article Contents
WANG Zhangqiong, YAN Echuan, JI Huibin. 2016: IN-SITU STRESS FIELD AND GEOLOGICAL TECTONIC ANALYSIS AT HUANGDAO WATER-SEALED UNDERGROUND OIL CARVEN SITE. JOURNAL OF ENGINEERING GEOLOGY, 24(1): 136-141. doi: 10.13544/j.cnki.jeg.2016.01.017
Citation: WANG Zhangqiong, YAN Echuan, JI Huibin. 2016: IN-SITU STRESS FIELD AND GEOLOGICAL TECTONIC ANALYSIS AT HUANGDAO WATER-SEALED UNDERGROUND OIL CARVEN SITE. JOURNAL OF ENGINEERING GEOLOGY, 24(1): 136-141. doi: 10.13544/j.cnki.jeg.2016.01.017

IN-SITU STRESS FIELD AND GEOLOGICAL TECTONIC ANALYSIS AT HUANGDAO WATER-SEALED UNDERGROUND OIL CARVEN SITE

doi: 10.13544/j.cnki.jeg.2016.01.017
Funds:

  • Received Date: 2014-09-20
  • Rev Recd Date: 2015-11-05
  • Publish Date: 2016-02-25
  • The initial in-situ stress field has significant influence on the stability of surrounding rock of underground carven. Nevertheless, the in-situ stress field result obtained by a single method is usually not of high reliability because of the complexity of geological conditions. This paper takes the Huangdao underground water-sealed cavern as example and analyzes its regional tectonic background and near-field faults. The in-situ stress field is tested by hydraulic fracturing method. The maximum principal stress is obtained. Its directions are is mainly oriented NWW.Its advantage direction is N73W. The stress field of study area is analyzed by geological structure analysis method. The impact of regional tectonic history on present tectonic stress field of study area is discussed. It is found that the maximum principal stress direction is NW~NNW.The maximum principal stress directions obtained by construction analysis and hydraulic fracturing method are roughly NW.But there is a certain bias. The main reason is probably due to the fact that the geological structure of research area is complicated and affected by the boundary conditions of tectonic deformation. Thus, the derived local stress field is deflected. The results suggest that the comprehensive evaluation of regional geological structure analysis and in-situ stress test should be used for stress field analysis. The result has a certain reference value for the comprehensive determination of stress field.
  • loading
  • Ask D,Stephansson O,Cornet F H,et al. 2009. Rock stress, rock stress measurements, and the integrated stress determination method(ISDM)[J]. Rock Mechanics & Rock Engineering, 42 (4): 559~584.

    Chen Q,Wu Q,Li J Y. 2006. Some problems of geologic hazard evaluation for underground water-sealed oil storage cave—Taking an oil storage cave in Shandong province for example [J]. The Chinese Journal of Geological Hazard and Control, 17 (4): 138~141.

    Chen X,Sun J Z,Zhang J K,et al. 2009. Fitting analysis of geo-stress field in Huangdao water sealed underground oil tank site[J]. Chinese Journal of Geotechnical Engineering, 31 (5): 713~719.

    Goodall D C,Aberg B,Brekke T L. 1988. Fundamentals of gas containment in unlined rock caverns[J]. Rock Mechanics and Rock Engineering, 21 (4): 235~258.

    Haimson B C. 2010. The effect of lithology, inhomogeneity, topography, and faults, on in situ stress measurements by hydraulic fracturing, and the importance of correct data interpretation and independent evidence in support of results[M]//Rock Stress and Earthquakes. London: Taylor & Francis Group.

    Jiang C L,Jiang Z Q,Yang W F,et al. 2011. In-situ stress characteristics and geological structure genetic mechanism in Zhaolou mine field[J]. Journal of China Coal Society, 36 (4): 583~587.

    Jin C Y,Feng X T,Zhang C S. 2010. Research on initial stress field of Baihetan hydropower station[J]. Rock and Soil Mechanics, 31 (3): 845~850, 855.

    Jing F,Sheng Q,Zhang Y H,et al. 2011. Study advance on in-site geostress measurement and analysis of initial geostress field in China[J]. Rock and Soil Mechanics, 32 (S2): 51~58.

    Luan G Z,Liu H J,Liu D Y. 2002. The background of seismic structure and controlled-earthquake faults of 3.2 grade earthquake in Jiaozhou Bay of Qingdao[J]. Journal of Ocean University of Qingdao, 32 (5): 763~769.

    Luan G Z,Wang H X,Yin M Q,et al. 2010. Characteristics of main faulted structures in Qingdao City and their influence on urban geological environment[J]. Acta Geoscientica Sinica, 31 (1): 102~108.

    Ma F. 2010. Study on fractured rock mass permeability of Huangdao water sealed underground carven[D]. Wuhan: China University of Geoscience(Wuhan).

    Park E S,Jung Y B,Song W K. 2010. Pilot study on the underground lined rock cavern for LNG storage[J]. Engineering Geology, 116 (1): 44~52.

    Peng H,Ma X M,Jiang J J,et al. 2011. Research on stress field and hydraulic fracturing in-situ stress measurement of 1000m deep hole in Zhaolou Coal mine[J]. Chinese Journal of Rock Mechanics and Engineering, 30 (8): 1638~1645.

    Qi L,Ma Q C. 2000. On the selection of longitudinal direction and stability of underground opening based on the analysis of in-situ stress field[J]. Chinese Journal of Rock Mechanics and Engineering, 19 (S): 1120~1123.

    Wang C H,Zhang Y S,Guo Q L,et al. 2011. New integrated analysis method to analyze stress regime of engineering area[J]. Chinese Journal of Geotechnical Engineering, 33 (10): 1562~1568.

    Wang Z Q,Yan E C,Ji H B,et al. 2013. Regional stability of underground water sealed storage caverns around western pacific coastal area in China[J]. Journal of Engineering Geology, 21 (4): 626~633.

    Wang Z Q,Yan E C,Lu G D,et al. 2014. Statistical analysis of in-situ stress field for underground water-sealed storage cavern in Chinese mainland[J]. Rock and Soil Mechanics, 35 (S1): 251~256.

    Wang Z Q,Yan E C,Wang L N,et al. 2015. Effect of geostress on the permeability of a fractured rock mass in the Huangdao underground water-sealed storage cavern[J]. Modern Tunnelling Technology, 52 (2): 72~77.

    Yang J. 2011. The stress-strain rules of underground water-sealed oil storage caverns and the optimal designs[D]. Wuhan: China University of Geoscience(Wuhan).

    Yang S,Yu L X,Du S W,et al. 2004. Feasibility analysis on using underground caverns state oil strategic reserves[J]. Oil & Gas Storage and Transportation, 23 (7): 22~24.

    Yu C,Li H B,Li G W,et al. 2010. Inversion analysis of initial stress field of Dalian underground oil storage cavern[J]. Rock and Soil Mechanics, 31 (12): 3984~3990.

    Zhang T T. 2013. Anisotropy of mechanical parameters' REV of rock mass in underground water-sealed caverns project[D]. Wuhan: China University of Geoscience(Wuhan).

    Zhang Y,Ren F L,Gong S Y,et al. 2013. Cretaceous stress field of the Muping-Jimo fault belt and its implication for tectonic evolution[J]. Marine Geology & Quaternary Geology, 33 (2): 79~85.

    Zhang Y H,Wei Q,Sheng Q,et al. 2011. Three dimensional back analysis of geostress field in underground powerhouse zone of Dagangshan hydropower station[J]. Rock and Soil Mechanics, 32 (5): 1523~1530.

    陈奇,武强,李俊彦. 2006. 地下水封石洞油库地质灾害危险性评估——以山东某地下水封石洞油库工程为例[J]. 中国地质灾害与防治学报, 17 (4): 138~141.

    陈祥,孙进忠,张杰坤,等. 2009. 黄岛地下水封石油洞库场区地应力场模拟分析[J]. 岩土工程学报, 31 (5): 713~719.

    姜春露,姜振泉,杨伟峰,等. 2011. 赵楼井田地应力特征及地质构造形成机制[J]. 煤炭学报, 36 (4): 583~587.

    金长宇,冯夏庭,张春生. 2010. 白鹤滩水电站初始地应力场研究分析[J]. 岩土力学, 31 (3): 845~850,855.

    景锋,盛谦,张勇慧,等. 2011. 我国原位地应力测量与地应力场分析研究进展[J]. 岩土力学, 32 (增2): 51~58.

    栾光忠,刘红军,刘冬雁. 2002. 青岛胶州湾3.2级地震构造背景与控震断裂[J]. 青岛海洋大学学报, 32 (5): 763~769.

    栾光忠,王红霞,尹明泉,等. 2010. 青岛城市主要断裂构造特征以及对城市地质环境的影响[J]. 地球学报, 31 (1): 102~108.

    马峰. 2010. 黄岛地下水封洞库裂隙岩体渗透性研究[D]. 武汉:中国地质大学(武汉).

    彭华,马秀敏,姜景捷,等. 2011. 赵楼煤矿1000m深孔水压致裂地应力测量及其应力场研究[J]. 岩石力学与工程学报, 30 (8): 1638~1645.

    戚蓝,马启超. 2000. 在地应力场分析的基础上探讨地下洞室长轴向选取和围岩稳定性[J]. 岩石力学与工程学报, 19 (增): 1120~1123.

    王成虎,张彦山,郭啟良,等. 2011. 工程区地应力场的综合分析法研究[J]. 岩土工程学报, 33 (10): 1562~1568.

    王章琼,晏鄂川,季惠斌,等. 2013. 我国环太平洋西海岸地区地下水封洞库选址区域稳定性研究[J]. 工程地质学报, 21 (4): 626~633.

    王章琼,晏鄂川,鲁功达,等. 2014. 我国大陆地下水封洞库库址区地应力场分布规律统计分析[J]. 岩土力学, 35 (增1): 251~256.

    王章琼,晏鄂川,王鲁男,等. 2015. 黄岛地下水封洞库地应力对裂隙岩体渗透特性影响研究[J]. 现代隧道技术, 52 (2): 72~77.

    杨举. 2011. 地下水封油库洞室群应力应变规律与设计优化研究[D]. 武汉:中国地质大学(武汉).

    杨森,于连兴,杜胜伟,等. 2004. 地下洞库作为国家原油储备库的可行性分析[J]. 油气储运, 23 (7): 22~24.

    于崇,李海波,李国文,等. 2010. 大连地下石油储备库地应力场反演分析[J]. 岩土力学, 31 (12): 3984~3990.

    张婷婷. 2013. 地下水封洞库岩体力学参数REV的各向异性研究[D]. 武汉:中国地质大学(武汉).

    张勇,任凤楼,龚淑云,等. 2013. 牟平—即墨断裂带白垩纪构造应力场及转化机制[J]. 海洋地质与第四纪地质, 33 (2): 79~85.

    张勇慧,魏倩,盛谦,等. 2011. 大岗山水电站地下厂房区三维地应力场反演分析[J]. 岩土力学, 32 (5): 1523~1530.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索
    Article views (2524) PDF downloads(589) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint