Volume 24 Issue 2
Apr.  2016
Turn off MathJax
Article Contents
XU Qiang, PENG Dalei, QI Xing, DONG Xiujun, LI Huajin, JU Yuanzhen. 2016: DANGCHUAN 2# LANDSLIDE OF APRIL 29, 2015 IN HEIFANGTAI AREA OF GANSU PROVINCE: CHARACTERISTICES AND FAILURE MECHANISM. JOURNAL OF ENGINEERING GEOLOGY, 24(2): 167-180. doi: 10.13544/j.cnki.jeg.2016.02.001
Citation: XU Qiang, PENG Dalei, QI Xing, DONG Xiujun, LI Huajin, JU Yuanzhen. 2016: DANGCHUAN 2# LANDSLIDE OF APRIL 29, 2015 IN HEIFANGTAI AREA OF GANSU PROVINCE: CHARACTERISTICES AND FAILURE MECHANISM. JOURNAL OF ENGINEERING GEOLOGY, 24(2): 167-180. doi: 10.13544/j.cnki.jeg.2016.02.001

DANGCHUAN 2# LANDSLIDE OF APRIL 29, 2015 IN HEIFANGTAI AREA OF GANSU PROVINCE: CHARACTERISTICES AND FAILURE MECHANISM

doi: 10.13544/j.cnki.jeg.2016.02.001
Funds:

  • Received Date: 2015-07-26
  • Rev Recd Date: 2015-10-20
  • Publish Date: 2016-04-25
  • A small scale of loess landslide occurred at Heifangtai in Dangchuan village of Yongjing county. Its occurrence is at 7:50 of April 29, 2015. The site is at the edge of the loess plateau. The instability of loess has a volume of 5104m3. It runs from the forth terrace to the second terrace of the Yellow river. After 3 hours later, however, a large scale of mudstone occurred at this place. Its volume is of 3.5105m3. The mudstone deposit is 780meters long, 100meters wide and the largest thickness of deposit is 17meters. The landslide is one of the few catastrophic landslides. This paper examines the sliding displacement monitoring and the crack distribution. Such examinations are combined with site geological investigation, low-altitude photogrammetry, site engineering geological survey and site moisture content test. This paper analyses the basic characteristics of the landslide and the formation and reasons of landslide by preliminary understanding. The results show that:(1)There are two sliding cases at Dangchuan 2# landslide from the time. There is only one sliding case time in first time sliding and three sliding cases in second times landslide from sliding mode and deposit characteristic. Dangchuan 2# landslide has four times sliding cases in all. (2)The area of the first sliding is 8396m2. Deformation distribution area is only at the edge of plateau and is smaller compared with the sliding area. The long-term creep deformation at the bottom of loess is the inducing factors of the first time landslide. (3)The area of the second sliding is 27422m2. There is rarely any crack at this part and the crack has no obvious deformation before the second times sliding. The liquefaction of the loess at the bottom of landslide plays a very important role in the second times sliding. The landslide has the characteristics such as sudden occurrence, movement long distance and destructive stronger. (4)The Dangchuan section begins to start mass type static liquefaction loess landslide and the boundary of landslide is the sinkholes, which is of great significance that is the research about other section of early recognition of loess landslide and monitoring and early warning of loess landslide.
  • loading
  • Dong Y,Jia J,Zhang M S,et al. 2013. An analysis of the inducing effects of irrigation and the responses of loess landslides in Heifangtai area[J]. Geological Bulletin of China, 32 (6):893~898.

    Derbyshire E,Mellors T W. 1988. Geological and geotechnical characteristics of some loess and loessic soils from China and Britain A comparison[J]. Engineering Geology, 25 (2-4):135~175.

    Huang R Q. 2007. Large-scale landslides and their sliding mechanisms in China since the 20th century[J]. Chinese Journal of Rock Mechanics and Engineering, 26 (3):433~454.

    Jin Y L,Dai F C. 2007. The mechanism of irrigation-induced landslides of loess[J]. Chinese Journal of Geotechnical Engineering, 29 (10):1493~1499.

    Jin Y L,Dai F C. 2008. Experimental investigation of static liquefaction of saturated loess[J]. Rock and Soil Mechanics, 29 (12):3293~3298.

    Kramer S L, Seed H B. 1988. Initiation of soil liquefaction under static loading conditions[J]. Journal of Geotechnical Engineering, 114 (4):412~430.

    Liao Q L,Li X,Li S D,et al. 2005. Occurrence, geology and geomogrphy characteristics and origin of Qianjianpiang landslide in three gorges reservoir area and study on ancient landslide criterion[J]. Chinese Journal of Rock Mechanics and Engineering, 24 (17):3146~3153.

    Lin X Y,Li T L,Zhang Z R,et al. 2013. Causes of Gaoloucun loess flowslide in Huaxian county, Shaanxi province[J]. Journal of Engineering Geology, 21 (2):282~288.

    Liu T S. 1985. Loess and the environment[M]. Beijing:China Ocean Press:1~481.

    Meng X M,Derbyshire E. 1998. Landslides and their control in the Chinese Loess Plateau:models and case studies from Gansu Province, China[J]. Geological Society, London, Engineering Geology Special Publications, 15 (1):141~153.

    Peng J B,Fan Z J,Wu D,et al. 2015. Heavy rainfall triggered loess-mudstone landslide and subsequent debris flow in Tianshui, China[J]. Engineering Geology, 186:79~90.

    Poulos S J,Gonzalo C,France J W. 1985. Liquefaction evaluation procedure[J]. Journal of Geotechnical Engineering, 111 (6):772~792.

    Rogers C D F,Dijkstra T A,Smalley I J. 1994. Hydroconsolidation and subsidence of loess:Studies from China, Russia, North America and Europe:In memory of Jan Sajgalik[J]. Engineering Geology, 37 (2):83~113.

    Shi J S,Li B,Wu S R,et al. 2013. Mechanism of large-scale slide at edge of loess plateau on north of Weihe river in Baoji urban area, Shaanxi province[J]. Journal of Engineering Geology, 21 (6):938~949.

    Sun J Z. 1988. Environmental geology in loess areas of China[J]. Environmental Geology and Water Sciences, 12 (1):49~61.

    Wang G H,Sassa K,Fukuoka H, et al. 2007. Experimental Study on the Shearing Behavior of Saturated Silty Soils Based on Ring-Shear Tests[J]. Journal of Geotechnical and Geoenvironmental Engineering, 133 (3):319~333.

    Wang J D. 1992. A mechanism of high-speed loess landslides-saturated loess creeping liquefaction[J]. Geological Review, 38 (6):532~539.

    Wang J D,Xiao S F,Zhang Z Y. 2001. The mechanism for movement of irrigation-induced high-speed loess landslide[J]. Journal of Engineering Geology, 9 (3):241~246.

    Wang Z R,Wu W J,Zhou Z Q. 2004. Landslide induced by over-irrigation in loess platform areas in Gansu Province[J]. The Chinese Journal of Geological Hazard and Control, 15 (3):43-46, 54.

    Wu C X,Xu L,Dai F C,et al. 2011. Topographic features and initiation of earth flows on Heifangtai loess plateau[J]. Rock and Soil Mechanics, 32 (6):1767~1773.

    Xu L,Dai F C,Tu X B,et al. 2014. Landslides in a loess platform, North-West China[J]. Landslides, 11 (6):993~1005.

    Xu Q,Huang R Q,Yin Y P,et al. 2009. The Jiweishan landslide of June 5, 2009 in Wulong, Chongqing:characteristics and failure mechanism[J]. Journal of Engineering Geology, 17 (4):433~444.

    Xu Q,Fan X M,Dong X J. 2012. Characteristics and formation mechanism of a catastrophic rainfall-induced rock avalanche-mud flow in Sichuan, China, 2010[J]. Landslides, 9 (1):143~154.

    Yamamuro J A,Lade P V. 1998. Steady-state concepts and static liquefaction of static liquefaction of silty sands[J]. Journal of Geotechnical and Geoenvironmental Engineering, 124 (9):868~877.

    Yang F,Chang W,Wang F W,et al. 2014. Motion simulation of rapid long run-out loess landslide at Dongfeng in Jingyang, Shaanxi[J]. Journal of Engineering Geology, 22 (5):890~895.

    Zhang D X,Wang G H,Luo C Y,et al. 2009. A rapid loess flowslide triggered by irrigation in China[J]. Landslides, 6 (1):55~60.

    Zhang F Y,Wang G H,Kamai T,et al. 2013. Undrained shear behavior of loess saturated with different concentrations of sodium chloride solution[J]. Engineering Geology, 155:69~79.

    Zhuang J Q,Peng J B. 2014. A coupled slope cutting-A prolonged rainfall-induced loess landslide:a 17 October 2011 case study[J]. Bulletin of Engineering Geology and the Environment, 73 (4):997~1011.

    Zhang M S. 2013. Formation mechanism as well as prevention and controlling techniques of loess geo-hazards in irrigated areas:A case study of Heifangtai immigration area in the Three Gorges Reservoir of the Yellow River[J]. Geological Bulletin of China, 32 (6):833~839.

    董英,贾俊,张茂省,等. 2013. 甘肃永靖黑方台地区灌溉诱发作用与黄土滑坡响应[J]. 地质通报, 32 (6):893~898.

    黄润秋.2007.20世纪以来中国的大型滑坡及其发生机制[J]. 岩石力学与工程学报, 26 (3):433~454.

    金艳丽,戴福初. 2007. 灌溉诱发黄土滑坡机理研究[J]. 岩土工程学报, 29 (10):1493~1499.

    金艳丽,戴福初. 2008. 饱和黄土的静态液化特性试验研究[J]. 岩土力学, 29 (12):3293~3298.

    廖秋林,李晓,李守定,等. 2005. 三峡库区千将坪滑坡的发生、地质地貌特征、成因及滑坡判据研究[J]. 岩石力学与工程学报, 24 (17):3146~3153.

    蔺晓燕,李同录,张子然,等. 2013. 陕西华县高楼村黄土滑坡-泥流的成因分析[J]. 工程地质学报, 21 (2):282~288.

    刘东生. 1985. 黄土与环境[M]. 北京:中国海洋出版社:1~481.

    石菊松,李滨,吴树仁,等. 2013. 宝鸡渭河北岸黄土塬边大型滑坡成因机制研究[J]. 工程地质学报, 21 (6):938~949.

    王家鼎. 1992. 高速黄土滑坡的一种机理——饱和黄土蠕动液化[J]. 地质论评, 38 (6):532~539.

    王家鼎,肖树芳,张倬元. 2001. 灌溉诱发高速黄土滑坡的运动机理[J]. 工程地质学报, 9 (3):241~246.

    王志荣,吴玮江,周自强. 2004. 甘肃黄土台塬区农业过量灌溉引起的滑坡灾害[J]. 中国地质灾害与防治学报, 15 (3):43~46, 54.

    武彩霞,许领,戴福初,等. 2011. 黑方台黄土泥流滑坡及发生机制研究[J]. 岩土力学, 32 (6):1767~1773.

    许强,黄润秋,殷跃平,等.2009.2009年6·5重庆武隆鸡尾山崩滑灾害基本特征与成因机理初步研究[J]. 工程地质学报, 17 (4):433~444.

    杨璠,常维,汪发武,等. 2014. 陕西泾阳东风高速远程黄土滑坡运动过程的模拟[J]. 工程地质学报, 22 (5):890~895.

    张茂省. 2013. 引水灌区黄土地质灾害成因机制与防控技术——以黄河三峡库区甘肃黑方台移民灌区为例[J]. 地质通报, 32 (6):833~839.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索
    Article views (3980) PDF downloads(660) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint