Volume 24 Issue 3
Jun.  2016
Turn off MathJax
Article Contents
ZHAO Zitong, SHEN Junhui, ZHU Huaping, WEI Wei, LIU Yin. 2016: INTEGRATED DEFORMATION MODULUS OF INTENSIVE ALTERED ROCK ZONE AT MENG DIGOU HYDROPOWER STATION. JOURNAL OF ENGINEERING GEOLOGY, 24(3): 459-464. doi: 10.13544/j.cnki.jeg.2016.03.016
Citation: ZHAO Zitong, SHEN Junhui, ZHU Huaping, WEI Wei, LIU Yin. 2016: INTEGRATED DEFORMATION MODULUS OF INTENSIVE ALTERED ROCK ZONE AT MENG DIGOU HYDROPOWER STATION. JOURNAL OF ENGINEERING GEOLOGY, 24(3): 459-464. doi: 10.13544/j.cnki.jeg.2016.03.016

INTEGRATED DEFORMATION MODULUS OF INTENSIVE ALTERED ROCK ZONE AT MENG DIGOU HYDROPOWER STATION

doi: 10.13544/j.cnki.jeg.2016.03.016
Funds:

  • Received Date: 2015-03-28
  • Rev Recd Date: 2015-08-08
  • Publish Date: 2016-06-25
  • Most of the dam foundation rock mass is granodiorite in the proposed Yalongjiang Mengdigou hydropower station, where intensive development of Hydrothermal alteration rock zone has a single width of 0.5~3m. Deformation test shows that the average deformation modulus of new micro-granodiorite is up to 31.5GPa. The deformation moduli of strong clay alteration rock and weak clay alteration rock are 6.79GPa and 11.10GPa, respectively. Therefore, the existence of intensive altered rock zone can have a significant impact on the deformation characteristics of the dam foundation rock. There are no mature methods to calculate the deformation modulus of the complex combination of rocks with deformation characteristics of significant differences. Therefore, this article is based on the rigid bearing plate deformation test and acoustic test. It uses the nonlinear regression method to analyze the correlation of rock deformation modulus and acoustics. It establishes the rock Vp-E0 correlation formula. Then, it uses the arithmetic average method to calculate the deformation modulus of typical intensive altered rock zone. The result is 18.03GPa and decreases by 42.76%to that of new micro-granodiorite rock. Meanwhile, according to a variety of altered rock band percentage, it uses the weighted average method to calculate deformation modulus of intensive altered rock zone. The result is 19.40GPa and decreases by 38.41%to that of new micro-granodiorite rock. The difference of the two methods is only 7.60%.Comparing with the rigid bearing plate result, the former is more safe and reliable. Thus, the method of nonlinear regression is suggested to calculate the deformation modulus of intensive altered rock zone at Mengdigou hydropower station.
  • loading
  • Dong X C. 2004. Water conservancy project rock mechanics[M]. Beijing:China Water Power Press.

    Hu S X,Ye Y,Fang C Q. 2004. The significance of petrology of metasomatic alteration and prospecting[M]. Beijing:Geological Publishing House.

    Kayabasi A,Gokceoglu C Ercanglu M. 2003. Estimating the deformation modulus of rock masses:A comparative study[J]. International Journal of Rock Mechnics & Mining Sciences,(40):55~63.

    Ji K J,Lü F X. 2007. Metasomatic hydrothermal metallogeny::cause corrobortion of Hydrothermal depositd[M]. Beijing::Geological Publishing House.

    Li C. 2001. A method for graphically presenting the deformation modulus of jointed rock masses[J]. Rock Mech. Rock Engng,34(1):67~75.

    Li W S,Lu X Y, Xiong S H. 1999. A study on dynamic and static behavoirs of deformation parameters of the rock in the Three Gorges reservoir area[J]. Underground Space,19(4):332~337.

    Li W S,Zhou H M,Wang F X. 2001. Study on determination method of macroscopic deformation parameter for engineering rock mass[J]. Chinese Journal of Rock Mechanics and Engineering,20(S):1758~1761.

    Miao Z,Sheng J H,Li W G,et al. 2014. Argillization and mechanism characteristics of altereddolerite in Daganshan hydropower station[J]. Journal of Engineering Geology,22(1):130~136.

    Qian W C,Ye K Y. 1956. Mechanics of elasticity[M]. Beijing:Science Press.

    Song Y H,Ju G H,Sun M. 2011. Relationship between wave velocity and deformation modulus of rock masses[J]. Rock and Soil Mechanics,32(5):1507~1512,1567.

    Yang J P,Chen W Z,Dai Y H. 2011. Study of scale effect of deformation modulus of fractured rock mass part:Finite element method[J]. Rock and Soil Mechanics,32(5):1538~1545.

    Yang S Q,Zhang X M, Su C D. 2003. Testing study on acoustic property of marble block[J]. Jourral of Liaoning Technical University,22(6):772~775.

    Zhou H M,Kong X H. 2006. Problem and countermeasures on parameter selection of rock mechanics in water conservancy and hydropower projects[J]. Journal of Yangtze River Sciontific Research Institute,23(4):36~40.

    Zhou H M,Sheng Q,Chen S W, et al. 2004. Numerical simulation of size-effect in deformation test of layer composite rockmass[J]. Chinese Journal of Rock Mechanics and Engineering,23(2):289~292.

    Zhang, L Y,Einstein, et al. 2004. Using RQD to estimate the deformation modulus of Rock Mechanics & Mining Sciences,(41):337~341.

    董学成. 2004. 水工岩石力学[M]. 北京:中国水利水电出版社.

    胡受奚,叶瑛,方长泉. 2004. 交代蚀变岩岩石学及其找矿意义[M]. 北京:地质出版社.

    季克俭,吕凤翔. 2007. 交代热液成矿学说:热液矿床成因的佐证[M]. 北京:地质出版社.

    李维树,鲁先元, 熊诗湖. 1999. 三峡工程坝区工程岩体变形特性的动静特性研究[J]. 地下空间,19(4):332~337.

    李维树,周火明,王复兴. 2001. 确定工程岩体宏观变形参数的方法探讨[J]. 岩石力学与工程学报,20(增):1758~1761.

    苗朝,沈军辉,李文纲,等. 2014. 大岗山坝区辉绿岩脉蚀变泥化特征及机理研究[J]. 工程地质学报,22(1):130~136.

    钱伟长,叶开源. 1956. 弹性力学[M]. 北京:科学出版社.

    宋彦辉,巨广宏,孙苗. 2011. 岩体波速与坝基岩体变形模量关系[J]. 岩土力学,32(5):1507~1512,1567.

    杨建平,陈卫忠,戴永浩. 2011. 裂隙岩体变形模量尺寸效应研究Ⅰ:有限元法[J]. 岩土力学,32(5):1538~1545.

    杨圣奇,张学民,苏承东. 2003. 岩块声学特性的试验研究[J]. 辽宁工程技术大学学报,22(6):772~775.

    周火明,孔祥辉. 2006. 水利水电工程岩石力学参数取值问题与对策[J]. 长江科学院院报,23(4):36~40.

    周火明,盛谦,陈殊伟,等. 2004. 层状复合岩体变形试验尺寸效应的数值模拟[J]. 岩石力学与工程学报,23(2):289~292.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索
    Article views (2424) PDF downloads(437) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint