Citation: | CAO Yangbing, CHEN Yuhua, HUANG Zhenping, LIU Chengyu, QIU Dongdong. 2020: STUDY ON EVALUATION INDEX OF BRITTLENESS CHARACTERISTICS OF GRANITE UNDER DIFFERENT WATER CONTENT CONDITIONS. JOURNAL OF ENGINEERING GEOLOGY, 28(1): 29-38. doi: 10.13544/j.cnki.jeg.2019-127 |
Andreev G E. 1995. Brittle failure of rock materials: test results and constitutive models[M]. A.A. Balkema: 123-128.
|
Altindag R. 2002. The evaluation of rock brittleness concept on rotary blast hole drills[J]. The Journal of the South African Institute of Mining and Metallurgy, 102(1): 61-66. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=68bd506349e4def8fb2fcdcbd2550718
|
Altindag R. 2003. Correlation of specific energy with rock brittleness concepts on rock cutting[J]. The Journal of the South African Institute of Mining and Metallurgy, 103(3): 163-171. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=9c0d8a48ec8cad223c1a423665a8c8e4
|
Altindag R. 2010. Assessment of some brittleness indexes in rock-drilling efficiency[J]. Rock Mechanics & Rock Engineering, 43(3): 361-370.
|
Blindheim O T, Bruland A. 1998. Boreability testing[C]//Norwegian TBM Tunneling-30 Years of Experience with TBMs in Norwegian Tunneling. Trondheim, Norway: Norwegian Soil and Rock Engineering Association: 29-34.
|
Bishop A W. 1967. Progressive failure with special reference to the mechanism causing it[M]. Oslo: Proceedings of the Geotechnical Conference: 142-150.
|
Chen G Q, Zhao C, Wei T, et al. 2018. Evaluation method of brittle characteristics of rock based on full stress-strain curve and crack initiation stress[J]. Chinese Journal of Rock Mechanics and Engineering, 37(1): 51-59. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=yslxygcxb201801005
|
Copur H, Bilgin N, Tuncdemir H, et al. 2003. A set of indices based on indentation tests for assessment of rock cutting performance and rock properties[J]. The Journal of the South African Institute of Mining and Metallurgy, 103(9): 589-599. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=397f948bb4675290800a2dd0aa0e87ce
|
David G, John H. 1960. Rock deformation: a symposium[M]. New York: Waverly Press: 66-67.
|
Gong Q M, Zhao J. 2007. Influence of rock brittleness on TBM penetration rate in Singapore granite[J]. Tunnelling and Underground Space Technology, 22(3): 317-324. doi: 10.1016/j.tust.2006.07.004
|
Goktan R M, Yilmaz N G. 2005. A new methodology for the analysis of the relationship between rock brittleness index and drag pick cutting efficiency[J]. The Journal of the South African Institute of Mining and Metallurgy, 105(10): 727-732. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=4051784844fa9d3e1728aeea670dccbc
|
Heteny M. 1966. Handbook of experimental stress analysis[M]. New York: John Wiley: 23-25.
|
Hucka V, Das B. 1974. Brittleness determination of rocks by different methods[J]. International Journal of Rock Mechanics and Mining Sciences and Geomechanics Abstracts, 11(10): 389-392. doi: 10.1016/0148-9062(74)91109-7
|
Hobbs B E, Means W D, Williams P F. 1976. An outline of structural geology[M]. New York: John Wiley and Sons Press: 69-70.
|
Jesse V H. 1960. Glossary of geology and related sciences[M]. Washington D. C: American Geological Institute: 99-102.
|
Kahraman S. 2002. Correlation of TBM and drilling machine performances with rock brittleness[J]. Engineering Geology, 65(4): 269-283. doi: 10.1016/S0013-7952(01)00137-5
|
Kahraman S, Altindag R. 2004. A brittleness index to estimate fracture toughness[J]. International Journal of Rock Mechanics and Mining Sciences, 41(2): 343-348. doi: 10.1016/j.ijrmms.2003.07.010
|
Lawn B R, Marshall D B. 1979. Hardness, toughness, and brittleness: An indentation analysis[J]. Journal of the American Ceramic Society, 62(7-8): 347-350. doi: 10.1111/j.1151-2916.1979.tb19075.x
|
Li S L, Feng X T, Wang Y J, et al. 2001. Evaluation of rockburst proneness in a deep hard rock mine[J]. Journal of Northeastern University(Natural Science), 22(1): 60-63. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dbdxxb200101017
|
Li Q H, Chen M, Jin Y, et al. 2012. Indoor evaluation method for shale brittleness and improvement[J]. Chinese Journal of Rock Mechanics and Engineering, 31(8): 1680-1685.
|
Morley A. 1944. Strength of materials[M]. London: Longman Green: 71-72.
|
Obert L, Duvall W I. 1967. Rock mechanics and the design of structures in rock[M]. New York: John Wiley: 78-82.
|
Protodyakonov M M. 1963. Mechanical properties and drillability of rocks[C]//Proceedings of the 5th Symposium on Rock Mechanics. Twin Cities, USA: University of Minnesota Press: 103-118.
|
Quinn J B, Quinn G D. 1997. Indentation brittleness of ceramics: a fresh approach[J]. Journal of Materials Science, 32(16): 4331-4346. doi: 10.1023/A:1018671823059
|
Ramsay J G. 1967. Folding and fracturing of rocks[M]. London: McGraw-Hil: 44-47.
|
Tang C A, Kaiser P K. 1998. Numerical simulation of cumulative damage and seismic energy release during brittle rock failure—Part Ⅰ:fundamentals[J]. International Journal of Rock Mechanics & Mining Sciences, 35(2): 113-121.
|
Tarasov B, Potvin Y. 2013. Universal criteria for rock brittleness estimation under triaxial compression[J]. International Journal of Rock Mechanics & Mining Sciences, 59(4): 57-69. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=598c8197d59de02c00c0f5c418dad872
|
The National Standards Compilation Group of the People's Republic of China. 2014. Standard for test methods of engineering rock mass(GB/T 50266-2013)[S]. Beijing: China Planning Press.
|
Wang Y H, Li W D, Li Q G, et al. 1998. Method of fuzzy comprehensive evaluations for rockbrust predication[J]. Chinese Journal of Rock Mechanics and Engineering, 17(5): 493-501.
|
Wang Y, Li X, Wu Y F, et al. 2014. Research on relationship between crack initiation stress level and brittleness indices for brittle rocks[J]. Chinese Journal of Rock Mechanics and Engineering, 33(2): 264-275. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=yslxygcxb201402007
|
Wang H J, Liu D A, Huang Z Q, et al. 2017. Mechanical properties and brittleness evaluation of layered shale rock[J]. Journal of Engineering Geology, 25(6): 1414-1423. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=gcdzxb201706004
|
Xia Y J, Li L C, Tang C A, et al. 2016. Rock brittleness evaluation based on stress dropping rate after peak stress and energy ratio[J]. Chinese Journal of Rock Mechanics and Engineering, 35(6): 1141-1154. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=yslxygcxb201606007
|
Xu S L, Wu W, Wang G Y, et al. 2001. Study on complete procedures of marble under triaxial compression Ⅰ:Testing study on complete procedures of triaxial compression and the procedures of unloading confining at the pre-peak and post-peak[J]. Chinese Journal of Rock Mechanics and Engineering, 20(6): 763-767.
|
Xu Z M, Huang R Q, Tang Z G. 2007. Engineering geological characteristics of the Touzhai landslide and its occurrence mechanisms[J]. Geologica Review, 53(5): 691-698. http://d.old.wanfangdata.com.cn/Periodical/OA000004815
|
Xie H P, Peng R D, Ju Y, et al. 2005. On energy analysis of rock failure[J]. Chinese Journal of Rock Mechanics and Engineering, 24(15): 2603-2608. http://d.old.wanfangdata.com.cn/Periodical/scdxxb-gckx201803030
|
Yagiz S. 2006. An investigation on the relationship between rock strength and brittleness[C]//Geological Congress of Turkey. Turkey: [s.n.]: 352.
|
Zhou H, Meng F Z, Zhang C Q, et al. 2014. Quantitative evaluation of rock brittleness based on stress-strain curve[J]. Chinese Journal of Rock Mechanics and Engineering, 33(6): 1114-1122.
|
陈国庆, 赵聪, 魏涛, 等. 2018.基于全应力-应变曲线及起裂应力的岩石脆性特征评价方法[J].岩石力学与工程学报, 37(1): 51-59. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=yslxygcxb201801005
|
李庶林, 冯夏庭, 王泳嘉, 等. 2001.深井硬岩岩爆倾向性评价[J].东北大学学报(自然科学版), 22(1): 60-63. doi: 10.3321/j.issn:1005-3026.2001.01.017
|
李庆辉, 陈勉, 金衍, 等. 2012.页岩脆性的室内评价方法及改进[J].岩石力学与工程学报, 31(8): 1680-1685. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=yslxygcxb201208023
|
王元汉, 李卧东, 李启光, 等. 1998.岩爆预测的模糊数学综合评判方法[J].岩石力学与工程学报, 17(5): 493-501. doi: 10.3321/j.issn:1000-6915.1998.05.003
|
王宇, 李晓, 武艳芳, 等. 2014.脆性岩石起裂应力水平与脆性指标关系探讨[J].岩石力学与工程学报, 33(2): 264-275. http://d.old.wanfangdata.com.cn/Periodical/yslxygcxb201402007
|
王洪建, 刘大安, 黄志全, 等. 2017.层状页岩岩石力学特性及其脆性评价[J].工程地质学报, 25(6): 1414-1423. doi: 10.13544/j.cnki.jeg.2017.06.003
|
徐则民, 黄润秋, 唐正光. 2007.头寨滑坡的工程地质特征及其发生机制[J].地质论评, 53(5): 691-698. doi: 10.3321/j.issn:0371-5736.2007.05.014
|
夏英杰, 李连崇, 唐春安, 等. 2016.基于峰后应力跌落速率及能量比的岩体脆性特征评价方法[J].岩石力学与工程学报, 35(6): 1141-1154. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=yslxygcxb201606007
|
徐松林, 吴文, 王广印, 等. 2001.大理岩等围压三轴压缩全过程研究Ⅰ:三轴压缩全过程和峰前、峰后卸围压全过程实验[J].岩石力学与工程学报, 20(6): 763-767. doi: 10.3321/j.issn:1000-6915.2001.06.002
|
谢和平, 彭瑞东, 鞠杨, 等. 2005.岩石破坏的能量分析初探[J].岩石力学与工程学报, 24(15): 2603-2608. doi: 10.3321/j.issn:1000-6915.2005.15.001
|
周辉, 孟凡震, 张传庆, 等. 2014.基于应力-应变曲线的岩石脆性特征定量评价方法[J].岩石力学与工程学报, 33(6): 1114-1122. http://d.old.wanfangdata.com.cn/Periodical/yslxygcxb201406003
|
中华人民共和国行业标准编写组. 2014.工程岩体试验方法标准(GB/T 50266-2013)[S].北京: 中国计划出版社.
|