Volume 28 Issue 1
Feb.  2020
Turn off MathJax
Article Contents
CAO Yangbing, CHEN Yuhua, HUANG Zhenping, LIU Chengyu, QIU Dongdong. 2020: STUDY ON EVALUATION INDEX OF BRITTLENESS CHARACTERISTICS OF GRANITE UNDER DIFFERENT WATER CONTENT CONDITIONS. JOURNAL OF ENGINEERING GEOLOGY, 28(1): 29-38. doi: 10.13544/j.cnki.jeg.2019-127
Citation: CAO Yangbing, CHEN Yuhua, HUANG Zhenping, LIU Chengyu, QIU Dongdong. 2020: STUDY ON EVALUATION INDEX OF BRITTLENESS CHARACTERISTICS OF GRANITE UNDER DIFFERENT WATER CONTENT CONDITIONS. JOURNAL OF ENGINEERING GEOLOGY, 28(1): 29-38. doi: 10.13544/j.cnki.jeg.2019-127

STUDY ON EVALUATION INDEX OF BRITTLENESS CHARACTERISTICS OF GRANITE UNDER DIFFERENT WATER CONTENT CONDITIONS

doi: 10.13544/j.cnki.jeg.2019-127
Funds:

Opening Fund of Engineering Research Center of Geotechnical Drilling and Protection Ministry of Education 201702

the Opening Fund of Key Laboratory of Geohazard Prevention of Hilly Mountains, Ministry of Land and Resources(Fujian Key Laboratory of Geohazard Prevention) FJKLGH2017K004

Open Testing Fund for Precious Instruments and Equipment of Fuzhou University 2017T013

the Opening Fund of Key Laboratory of Geohazard Prevention of Hilly Mountains, Ministry of Land and Resources(Fujian Key Laboratory of Geohazard Prevention) FJKLGH2017K002

  • Received Date: 2019-03-22
  • Accepted Date: 2019-09-01
  • Publish Date: 2020-02-25
  • Accurately evaluation of brittleness characteristics of granite under different water content is of great significance to rock mass stability evaluation. The existing rock brittleness evaluation indices are summarized. The indices based on stress-strain curve are analyzed in detail. The brittleness of granite decreases with the increase of water content under uniaxial compression,but experiment results show that the indices which based on the stress-strain curve are difficult to accurately reflect the brittleness characteristics of granite under different water contents. So a new brittleness index Bd is proposed and can fully reflect the whole process of granite deformation and failure. Considering the whole process stress-strain curve and the post peak failure time,the new index Bd uses the peak strain to characterize the pre-peak brittleness characteristics and uses the post peak stress drop rate and the post peak strain growth rate to characterize the post-peak brittleness characteristics. It is proved by experiments that the index Bd can accurately reflect the trend that the granite brittleness decreases with the increase of water content. The new index Bd has superiority over the other brittleness indices. The research results can provide some references and help to enrich and improve the rock brittle characteristics evaluation methods.
  • loading
  • Andreev G E. 1995. Brittle failure of rock materials: test results and constitutive models[M]. A.A. Balkema: 123-128.
    Altindag R. 2002. The evaluation of rock brittleness concept on rotary blast hole drills[J]. The Journal of the South African Institute of Mining and Metallurgy, 102(1): 61-66. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=68bd506349e4def8fb2fcdcbd2550718
    Altindag R. 2003. Correlation of specific energy with rock brittleness concepts on rock cutting[J]. The Journal of the South African Institute of Mining and Metallurgy, 103(3): 163-171. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=9c0d8a48ec8cad223c1a423665a8c8e4
    Altindag R. 2010. Assessment of some brittleness indexes in rock-drilling efficiency[J]. Rock Mechanics & Rock Engineering, 43(3): 361-370.
    Blindheim O T, Bruland A. 1998. Boreability testing[C]//Norwegian TBM Tunneling-30 Years of Experience with TBMs in Norwegian Tunneling. Trondheim, Norway: Norwegian Soil and Rock Engineering Association: 29-34.
    Bishop A W. 1967. Progressive failure with special reference to the mechanism causing it[M]. Oslo: Proceedings of the Geotechnical Conference: 142-150.
    Chen G Q, Zhao C, Wei T, et al. 2018. Evaluation method of brittle characteristics of rock based on full stress-strain curve and crack initiation stress[J]. Chinese Journal of Rock Mechanics and Engineering, 37(1): 51-59. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=yslxygcxb201801005
    Copur H, Bilgin N, Tuncdemir H, et al. 2003. A set of indices based on indentation tests for assessment of rock cutting performance and rock properties[J]. The Journal of the South African Institute of Mining and Metallurgy, 103(9): 589-599. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=397f948bb4675290800a2dd0aa0e87ce
    David G, John H. 1960. Rock deformation: a symposium[M]. New York: Waverly Press: 66-67.
    Gong Q M, Zhao J. 2007. Influence of rock brittleness on TBM penetration rate in Singapore granite[J]. Tunnelling and Underground Space Technology, 22(3): 317-324. doi: 10.1016/j.tust.2006.07.004
    Goktan R M, Yilmaz N G. 2005. A new methodology for the analysis of the relationship between rock brittleness index and drag pick cutting efficiency[J]. The Journal of the South African Institute of Mining and Metallurgy, 105(10): 727-732. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=4051784844fa9d3e1728aeea670dccbc
    Heteny M. 1966. Handbook of experimental stress analysis[M]. New York: John Wiley: 23-25.
    Hucka V, Das B. 1974. Brittleness determination of rocks by different methods[J]. International Journal of Rock Mechanics and Mining Sciences and Geomechanics Abstracts, 11(10): 389-392. doi: 10.1016/0148-9062(74)91109-7
    Hobbs B E, Means W D, Williams P F. 1976. An outline of structural geology[M]. New York: John Wiley and Sons Press: 69-70.
    Jesse V H. 1960. Glossary of geology and related sciences[M]. Washington D. C: American Geological Institute: 99-102.
    Kahraman S. 2002. Correlation of TBM and drilling machine performances with rock brittleness[J]. Engineering Geology, 65(4): 269-283. doi: 10.1016/S0013-7952(01)00137-5
    Kahraman S, Altindag R. 2004. A brittleness index to estimate fracture toughness[J]. International Journal of Rock Mechanics and Mining Sciences, 41(2): 343-348. doi: 10.1016/j.ijrmms.2003.07.010
    Lawn B R, Marshall D B. 1979. Hardness, toughness, and brittleness: An indentation analysis[J]. Journal of the American Ceramic Society, 62(7-8): 347-350. doi: 10.1111/j.1151-2916.1979.tb19075.x
    Li S L, Feng X T, Wang Y J, et al. 2001. Evaluation of rockburst proneness in a deep hard rock mine[J]. Journal of Northeastern University(Natural Science), 22(1): 60-63. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dbdxxb200101017
    Li Q H, Chen M, Jin Y, et al. 2012. Indoor evaluation method for shale brittleness and improvement[J]. Chinese Journal of Rock Mechanics and Engineering, 31(8): 1680-1685.
    Morley A. 1944. Strength of materials[M]. London: Longman Green: 71-72.
    Obert L, Duvall W I. 1967. Rock mechanics and the design of structures in rock[M]. New York: John Wiley: 78-82.
    Protodyakonov M M. 1963. Mechanical properties and drillability of rocks[C]//Proceedings of the 5th Symposium on Rock Mechanics. Twin Cities, USA: University of Minnesota Press: 103-118.
    Quinn J B, Quinn G D. 1997. Indentation brittleness of ceramics: a fresh approach[J]. Journal of Materials Science, 32(16): 4331-4346. doi: 10.1023/A:1018671823059
    Ramsay J G. 1967. Folding and fracturing of rocks[M]. London: McGraw-Hil: 44-47.
    Tang C A, Kaiser P K. 1998. Numerical simulation of cumulative damage and seismic energy release during brittle rock failure—Part Ⅰ:fundamentals[J]. International Journal of Rock Mechanics & Mining Sciences, 35(2): 113-121.
    Tarasov B, Potvin Y. 2013. Universal criteria for rock brittleness estimation under triaxial compression[J]. International Journal of Rock Mechanics & Mining Sciences, 59(4): 57-69. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=598c8197d59de02c00c0f5c418dad872
    The National Standards Compilation Group of the People's Republic of China. 2014. Standard for test methods of engineering rock mass(GB/T 50266-2013)[S]. Beijing: China Planning Press.
    Wang Y H, Li W D, Li Q G, et al. 1998. Method of fuzzy comprehensive evaluations for rockbrust predication[J]. Chinese Journal of Rock Mechanics and Engineering, 17(5): 493-501.
    Wang Y, Li X, Wu Y F, et al. 2014. Research on relationship between crack initiation stress level and brittleness indices for brittle rocks[J]. Chinese Journal of Rock Mechanics and Engineering, 33(2): 264-275. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=yslxygcxb201402007
    Wang H J, Liu D A, Huang Z Q, et al. 2017. Mechanical properties and brittleness evaluation of layered shale rock[J]. Journal of Engineering Geology, 25(6): 1414-1423. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=gcdzxb201706004
    Xia Y J, Li L C, Tang C A, et al. 2016. Rock brittleness evaluation based on stress dropping rate after peak stress and energy ratio[J]. Chinese Journal of Rock Mechanics and Engineering, 35(6): 1141-1154. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=yslxygcxb201606007
    Xu S L, Wu W, Wang G Y, et al. 2001. Study on complete procedures of marble under triaxial compression Ⅰ:Testing study on complete procedures of triaxial compression and the procedures of unloading confining at the pre-peak and post-peak[J]. Chinese Journal of Rock Mechanics and Engineering, 20(6): 763-767.
    Xu Z M, Huang R Q, Tang Z G. 2007. Engineering geological characteristics of the Touzhai landslide and its occurrence mechanisms[J]. Geologica Review, 53(5): 691-698. http://d.old.wanfangdata.com.cn/Periodical/OA000004815
    Xie H P, Peng R D, Ju Y, et al. 2005. On energy analysis of rock failure[J]. Chinese Journal of Rock Mechanics and Engineering, 24(15): 2603-2608. http://d.old.wanfangdata.com.cn/Periodical/scdxxb-gckx201803030
    Yagiz S. 2006. An investigation on the relationship between rock strength and brittleness[C]//Geological Congress of Turkey. Turkey: [s.n.]: 352.
    Zhou H, Meng F Z, Zhang C Q, et al. 2014. Quantitative evaluation of rock brittleness based on stress-strain curve[J]. Chinese Journal of Rock Mechanics and Engineering, 33(6): 1114-1122.
    陈国庆, 赵聪, 魏涛, 等. 2018.基于全应力-应变曲线及起裂应力的岩石脆性特征评价方法[J].岩石力学与工程学报, 37(1): 51-59. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=yslxygcxb201801005
    李庶林, 冯夏庭, 王泳嘉, 等. 2001.深井硬岩岩爆倾向性评价[J].东北大学学报(自然科学版), 22(1): 60-63. doi: 10.3321/j.issn:1005-3026.2001.01.017
    李庆辉, 陈勉, 金衍, 等. 2012.页岩脆性的室内评价方法及改进[J].岩石力学与工程学报, 31(8): 1680-1685. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=yslxygcxb201208023
    王元汉, 李卧东, 李启光, 等. 1998.岩爆预测的模糊数学综合评判方法[J].岩石力学与工程学报, 17(5): 493-501. doi: 10.3321/j.issn:1000-6915.1998.05.003
    王宇, 李晓, 武艳芳, 等. 2014.脆性岩石起裂应力水平与脆性指标关系探讨[J].岩石力学与工程学报, 33(2): 264-275. http://d.old.wanfangdata.com.cn/Periodical/yslxygcxb201402007
    王洪建, 刘大安, 黄志全, 等. 2017.层状页岩岩石力学特性及其脆性评价[J].工程地质学报, 25(6): 1414-1423. doi: 10.13544/j.cnki.jeg.2017.06.003
    徐则民, 黄润秋, 唐正光. 2007.头寨滑坡的工程地质特征及其发生机制[J].地质论评, 53(5): 691-698. doi: 10.3321/j.issn:0371-5736.2007.05.014
    夏英杰, 李连崇, 唐春安, 等. 2016.基于峰后应力跌落速率及能量比的岩体脆性特征评价方法[J].岩石力学与工程学报, 35(6): 1141-1154. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=yslxygcxb201606007
    徐松林, 吴文, 王广印, 等. 2001.大理岩等围压三轴压缩全过程研究Ⅰ:三轴压缩全过程和峰前、峰后卸围压全过程实验[J].岩石力学与工程学报, 20(6): 763-767. doi: 10.3321/j.issn:1000-6915.2001.06.002
    谢和平, 彭瑞东, 鞠杨, 等. 2005.岩石破坏的能量分析初探[J].岩石力学与工程学报, 24(15): 2603-2608. doi: 10.3321/j.issn:1000-6915.2005.15.001
    周辉, 孟凡震, 张传庆, 等. 2014.基于应力-应变曲线的岩石脆性特征定量评价方法[J].岩石力学与工程学报, 33(6): 1114-1122. http://d.old.wanfangdata.com.cn/Periodical/yslxygcxb201406003
    中华人民共和国行业标准编写组. 2014.工程岩体试验方法标准(GB/T 50266-2013)[S].北京: 中国计划出版社.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(5)  / Tables(5)

    Article views (2467) PDF downloads(87) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint