Citation: | WANG Ming, LI Lihui, LIAO Xiaohui, HUANG Beixiu, WANG Xueliang, CHEN Zigan, YANG Fuhua, LIU Jianli. 2019: RAPID TOPOGRAPHIC MEASUREMENT AND THREE-DIMENSIONAL NUMERICAL MODELING METHOD FOR HIGH-STEEP/UPRIGHT SLOPES BASED ON AERIAL PHOTOGRAPHY OF UAV. JOURNAL OF ENGINEERING GEOLOGY, 27(5): 1000-1009. doi: 10.13544/j.cnki.jeg.2019052 |
3D Systems, Inc. 2019. Geomagic Free trial version[CP].https://cn.3dsystems.com/
|
Altair Engineering, Inc. 2019. Hypermesh Free trial version[CP].https://www.altairhyperworks.com.cn/product/HyperMesh
|
Brunier G, Fleury J, Anthony E J, et al. 2016. Close-range airborne Structure-from -Motion Photogrammetry for high-resolution beach morphometric surveys:Examples from an embayed rotating beach[J]. Geomorphology, 261:76-88. doi: 10.1016/j.geomorph.2016.02.025
|
Cai S X. 2016. Research on UAV aerial photogrammetry technology process[J]. Science and Technology Innovation Herald(Aerospace science and technology), (17):7-8. http://d.old.wanfangdata.com.cn/Periodical/zhonggtdkx201801010
|
Chen Z X, Ye X, Zhang W B, et al. 2019. Formation mechanism analysis and stability evaluation of dangerous rock collapses based on the oblique photography by unmanned aerial vehicles[J]. China Earthquake Engineering Journal, 41(1):257-267. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=xbdzxb201901037
|
Colomina I, Molina P. 2014. Unmanned aerial systems for photogrammetry and remote sensing:A review[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 92:79-97. doi: 10.1016/j.isprsjprs.2014.02.013
|
Deng X L, Li L H. 2017. Refined modeling of complex geological body based on three-dimensional laser scanning technique[J]. Journal of Engineering Geology, 25(1):209-217. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=gcdzxb201701027
|
Dong X J, Huang R Q. 2006. Application of 3D laser scanning technology to geologic survey of high and steep slope[J]. Chinese Journal of Rock Mechanics and Engineering, 25 (S2):3629-3635. http://cn.bing.com/academic/profile?id=8083087177bff231fbee92d143c8b3c0&encoded=0&v=paper_preview&mkt=zh-cn
|
Dong X J. 2007. The three dimensional laser scanning technique and research on its engineering application[D]. Chengdu: Chengdu University of Technology.
|
Ferreira E, Chandler J, Wackrow R, et al. 2017. Automated extraction of free surface topography using SfM-MVS photogrammetry[J]. Flow Measurement and Instrumentation, 54:243-249. doi: 10.1016/j.flowmeasinst.2017.02.001
|
Huang J, Shi Y C, Ji F, et al. 2013. Discussion on the application of 3-D laser scanning technology to the investigation of high slop perilous rockmass[J]. Journal of Yangtze River Scientific Research Institute, 30(11):45-49. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=cjkxyyb201311010
|
Huang R Q, Xu Q, Tao L J. 2002. Process simulation and control study of geologic hazards[M]. Beijing:Science Press:81-91.
|
Huang R Q, Xu Q. 1999. The simulation and control in the process of geological disaster-based on the geological hazard evaluation of deformation theory and the theoretical outline of the design govemance[J]. Science Development, 9(12S):1273-1279.
|
Jiang Y, Yan J, Chen S J. 2013. Application of 3D laser scanning technology in mining slope geological survey[J]. Nonferrous Metals(Mining Section), 65(5):96-100. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ysjs-ks201305023
|
Li Q, Qin Y Z, Li H Y. 2006. Study on the application of 3D laser scanning technology in subsidence monitoring[J]. Coal Engineering, (4):97-99.
|
Li T. 2019. Precision analysis of UAV based on RTK/PPK technology in large scale topographic mapping[J]. Geomatics & Spatial Information Technology, 42(3):166-168. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dbch201903046
|
Lin H Y, Huang H F, Lü Y M, et al. 2016. Micro-UAV based remote sensing method for monitoring landslides in three gorges reservoir, China[C]//Inst Elect & Elect Engineers, et al. IEEE International Symposium on Geoscience and Remote Sensing IGARSS.[S.L.]: IEEE: 4944-4947.
|
Liu C J, Zhang S F, Ding L Q, et al. 2012. Identification of dangerous rock mass of high slope and study of anchoring method based on laser scanning[J]. Chinese Journal of Rock Mechanics and Engineering, 31(10):2139-2146. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=yslxygcxb201210020
|
Liu H Y, Wang X L, Li L H, et al. 2017. Application of UAV aerial photogrammetry for rockfall disaster survey[J]. Journal of Engineering Geology, 25 (S):82-87.
|
Liu W L, Zhao X P. 2009. Study on the application of 3D laser scanning technology in landslide monitoring[J]. Metal Mine, (2):131-133. http://en.cnki.com.cn/Article_en/CJFDTOTAL-JSKS200902038.htm
|
Manconi A, Ziegler M, Blöchliger T, et al. 2019. Technical note:optimization of unmanned aerial vehicles flight planning in steep terrains[J]. International Journal of Remote Sensing, 40(7):2483-2492. doi: 10.1080/01431161.2019.1573334
|
Sun J J, Wang X L, Chen Z G, et al. 2017. Characteristics of rock mass structure and prediction of rock mass behavior of high-steep slope[J]. Journal of Engineering Geology, 25 (S):407-414.
|
Wang H J, Deng J L, Luo X Q, et al. 2017. Mapping of road-slope based on low-altitude photogrammetry by using multi-rotor UAV[J]. Geotechnical Investigation & Surveying, (12):45-49, 54. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=gckc201712009
|
Wang X, Chen W, Wang R S, et al. 2010. Discussion on the application prospect of low-altitude UAV remote sensing technology in water conservancy related fields[J]. Zhejiang Hydrotechnics, (6):27-29.
|
Westoby M J, Brasington J, Glasser N F, et al. 2012. 'Structure-from -Motion' photogrammetry:A low-cost, effective tool for geoscience applications[J]. Geomorphology, 179:300-314. doi: 10.1016/j.geomorph.2012.08.021
|
Xu J J, Wang H C, Luo Y Z, et al. 2010. Deformation monitoring and data processing of landslide based on 3D laser scanning[J]. Rock and Soil Mechanics, 31 (7):2188-2191, 2196. http://cn.bing.com/academic/profile?id=617cc691ef9fade15a3c5edc32ffd607&encoded=0&v=paper_preview&mkt=zh-cn
|
Xu Z H, Wu L X, Chen S J, et al. 2016. Method of Engineering Volume Monitoring and Calculation for Open-Pit Mine from UAV Images[J]. Journal of Northeastern University(Natural Science), 37 (1):84-88. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dbdxxb201601018
|
Yang Z X, Tian J, Zhou H Y. 2019. Application of UAV aerophotogrammetry technique in 1:2000 topographic surveying of some reservoir area[J]. Geospatial Information, 17(3):13. http://en.cnki.com.cn/Article_en/CJFDTotal-DXKJ201903002.htm
|
Zhang H. 2014. Analysis of application technology of UAV in surveying and mapping engineering[J]. Silicon Valley, (16):127-128. http://d.old.wanfangdata.com.cn/Periodical/dzcs201912054
|
Zhang Q Q. 2018. An application of light drone in interpretation of dangerous rock mass[J]. China's Manganese Industry, 36(5):14-20. http://d.old.wanfangdata.com.cn/Periodical/zgmengy201805006
|
Zhao M Y, Wang F Y, Wang M C, et al. 2018. Rock mass discontinuity acquisition based on photogrammetry of UAV[J]. Journal of Engineering Geology, 26 (S):480-487.
|
Zhejiang Bureau of Geology and Mineral Resources. 1989. Regional Geology of Zhejiang Province[M]. Beijing:Geological Publishing House.
|
Zhou G Y, Shi C F, Sun J. 2019. Research on topographic mapping methods of UAV slope photography[J]. Beijing Surveying and Mapping, 33(1):76-79. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=bjch201901017
|
Zhou X J, Hu Z B, Qiao X. 2019. The application of unmanned aerial vehicle oblique photography technique in large scale topographic mapping[J]. Urban Geotechnical Investigation & Surveying, (1):63-66. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=cskc201901015
|
蔡舒翔. 2016.无人机航空摄影测量技术流程研究[J].科技创新导报(航空航天科学技术), (17):7-8. http://d.old.wanfangdata.com.cn/Periodical/kjzxdb201617004
|
陈宙翔, 叶咸, 张文波, 等. 2019.基于无人机倾斜摄影的强震区公路高位危岩崩塌形成机制及稳定性评价[J].地震工程学报, 41(1):257-267. http://d.old.wanfangdata.com.cn/Periodical/xbdzxb201901037
|
邓小龙, 李丽慧. 2017.基于三维激光扫描技术的复杂三维地质体建模方法[J].工程地质学报, 25(1):209-217. http://www.gcdz.org/CN/abstract/abstract12342.shtml
|
董秀军, 黄润秋. 2006.三维激光扫描技术在高陡边坡地质调查中的应用[J].岩石力学与工程学报, 25(增2):3629-3635. http://d.old.wanfangdata.com.cn/Periodical/yslxygcxb2006z2046
|
董秀军. 2007.三维激光扫描技术及其工程应用研究[D].成都: 成都理工大学. www.ecice06.com/CN/volumn/volumn_1678.shtml
|
广东南方数码科技股份有限公司. 2019.南方CASS免费试用版[CP].http://o.southgis.com/
|
黄江, 石豫川, 吉锋, 等. 2013.三维激光扫描技术在高边坡危岩体调查中的应用与讨论[J].长江科学院院报, 30(11):45-49. http://d.old.wanfangdata.com.cn/Periodical/cjkxyyb201311010
|
黄润秋, 许强, 陶连金. 2002.地质灾害过程模拟和过程控制研究[M].北京:科学出版社:81-91.
|
黄润秋, 许强. 1999.地质灾害过程模拟与过程控制——基于变形理论的地质灾害评价及治理设计理论纲要[J].自然科学进展, 9(12增刊):1273-1279. http://www.cnki.com.cn/Article/CJFDTotal-ZKJZ1999S1020.htm
|
江颜, 闫俊, 陈思娇. 2013.三维激光扫描在矿区边坡地质调查中的应用[J].有色金属(矿山部分), 65(5):96-100. http://d.old.wanfangdata.com.cn/Periodical/ysjs-ks201305023
|
李秋, 秦永智, 李宏英. 2006.激光三维扫描技术在矿区地表沉陷监测中的应用研究[J].煤炭工程, (4):97-99. http://d.old.wanfangdata.com.cn/Periodical/mtgc200604040
|
李天. 2019.基于RTK技术的无人机在大比例尺地形图测绘中的精度分析[J].测绘与空间地理信息, 42(3):166-168. http://d.old.wanfangdata.com.cn/Periodical/dbch201903046
|
刘昌军, 张顺福, 丁留谦, 等. 2012.基于激光扫描的高边坡危岩体识别及锚固方法研究[J].岩石力学与工程学报, 31(10):2139-2146. http://d.old.wanfangdata.com.cn/Periodical/yslxygcxb201210020
|
刘海洋, 王学良, 李丽慧, 等. 2017.无人机航空摄影测量技术在崩塌灾害调查中的应用[J].工程地质学报, 25(增刊):82-87. http://www.gcdz.org/CN/abstract/abstract12591.shtml
|
刘文龙, 赵小平. 2009.基于三维激光扫描技术在滑坡监测中的应用研究[J].金属矿山, (2):131-133. http://d.old.wanfangdata.com.cn/Periodical/jsks200902036
|
孙娟娟, 王学良, 陈子干, 等. 2017.高陡边坡危石的岩体结构特征识别及滚石运动特征预测[J].工程地质学报, 25(增刊):407-414. http://cpfd.cnki.com.cn/Article/CPFDTOTAL-GCDZ201710001063.htm
|
王华俊, 邓检良, 罗先启, 等. 2017.基于多旋翼无人机低空摄影的公路边坡测绘研究[J].工程勘察, (12):45-49, 54. http://d.old.wanfangdata.com.cn/Periodical/gckc201712009
|
王新, 陈武, 汪荣胜, 等. 2010.浅论低空无人机遥感技术在水利相关领域中的应用前景[J].浙江水利科技, (6):27-29. http://d.old.wanfangdata.com.cn/Periodical/zjslkj201006010
|
徐进军, 王海城, 罗喻真, 等. 2010.基于三维激光扫描的滑坡变形监测与数据处理[J].岩土力学, 31 (7):2188-2191, 2196. http://d.old.wanfangdata.com.cn/Periodical/ytlx201007027
|
许志华, 吴立新, 陈绍杰, 等. 2016.基于无人机影像的露天矿工程量监测分析方法[J].东北大学学报(自然科学版), 37(1):84-88. http://d.old.wanfangdata.com.cn/Periodical/dbdxxb201601018
|
杨智翔, 田佳, 周航宇. 2019.无人机航测在某水库1:2000地形测绘中的应用[J].地理空间信息, 17(3):1-3. http://d.old.wanfangdata.com.cn/Periodical/dlkjxx201903002
|
张涵. 2014.无人机在测绘工程中应用技术的分析[J].硅谷, (16):127-128. http://d.old.wanfangdata.com.cn/Periodical/guig201416093
|
张骞棋. 2018.轻型无人机在危岩体结构面信息解译中的应用[J].中国锰业, 36(5):14-20. http://d.old.wanfangdata.com.cn/Periodical/zgmengy201805006
|
赵明宇, 王凤艳, 王明常, 等. 2018.基于无人机摄影测量的岩体结构面信息获取[J].工程地质学报, 26(增刊):480-487. http://www.gcdz.org/CN/abstract/abstract22861.shtml
|
浙江省地质矿产局. 1989.浙江省区域地质志[M].北京:地质出版社.
|
周光耀, 史超凡, 孙健. 2019.无人机倾斜摄影快速地形图测绘方法研究[J].北京测绘, 33(1):76-79. http://d.old.wanfangdata.com.cn/Periodical/bjch201901017
|
周小杰, 胡振彪, 乔新. 2019.无人机倾斜摄影技术在大比例尺地形图测绘中的应用[J].城市勘测, (1):63-66. http://d.old.wanfangdata.com.cn/Periodical/zggxjsqy201712142
|