Volume 27 Issue s1
Dec.  2019
Turn off MathJax
Article Contents
GUO Zhenghao, HUANG Junming, FEI Jianbo, JIE Yuxin. 2019: INFLUENCE OF THE FRICTION COEFFICIENT ON THE PROCESS OF LANDSLIDES. JOURNAL OF ENGINEERING GEOLOGY, 27(s1): 193-199. doi: 10.13544/j.cnki.jeg.2019065
Citation: GUO Zhenghao, HUANG Junming, FEI Jianbo, JIE Yuxin. 2019: INFLUENCE OF THE FRICTION COEFFICIENT ON THE PROCESS OF LANDSLIDES. JOURNAL OF ENGINEERING GEOLOGY, 27(s1): 193-199. doi: 10.13544/j.cnki.jeg.2019065

INFLUENCE OF THE FRICTION COEFFICIENT ON THE PROCESS OF LANDSLIDES

doi: 10.13544/j.cnki.jeg.2019065
Funds:

This research is supported by the National Key Research and Development Program of China(Grant No. 2017YFC0404802) and the National Natural Science Foundation of China(Grant No. 41790434)

  • Received Date: 2019-05-27
  • Rev Recd Date: 2019-07-01
  • It is thought that the internal friction angle of soil remains unchanged in traditional calculation methods for landslides. In fact, the internal friction angle of soil changes with slope sliding. We analyzed the process of landslides in consideration of the change of the internal friction angle of soil by the material point method. In the material point method, material points with regional information discretizes the slope body. It abandons deformed grids after a computational time step. New grids are employed in the next step. For the example in this paper, since the inertia parameter was small, the results in consideration of the change of the internal friction angle of soil are close to those with a fixed value of lower limit parameter. we further compared the influence of different bounds of friction coefficient on the process of landslides. The shape of the landslide will be flatter with larger sliding distance if the bound of friction coefficient being smaller.
  • loading
  • Brugnot G. 1980. Recent progress and new application of the dynamics of avalanches[J]. Journal of Glaciological,26(94):515-516.
    Buchholtz V,PÖschel T. 1994. Numerical investigations of the evolution of sandpiles[J]. Physica A Statistical Mechanics & its Applications, 202(S3-4):390-401.
    Dent J D,Lang T E. 1982. Experiments on mechanics of flowing snow[J]. Cold Regions Science & Technology,5(3):253-258.
    Erismann T H. 1986. Flowing, rolling, bouncing, sliding:Synopsis of basic mechanisms[J]. Acta Mechanica,64(1):101-110.
    Fei J B. 2016. Study on a μ(I)rheology-based numerical simulation method for high-speed and long-distance landslides[D]. Beijing:Tsinghua University.
    Gubler H. 1987. Measurements and modeling of snow avalanche speeds[J]. Iahs Publication,162:405-420.
    Huang H Q,Zhao Q H. 2010. Basic characteristics and preliminary mechanism analysis of large scale rock slide-sturzstrom at Wenjiagou triggered by Wenchuan earthquake[J]. Journal of Engineering Geology,18(2):168-177.
    Jop P,Forterre Y,Pouliquen O. 2005. Crucial role of sidewalls in granular surface flows:consequences for the rheology[J]. Journal of Fluid Mechanics,541:167-192.
    Jop P,Forterre Y,Pouliquen O. 2006. A constitutive law for dense granular flows[J]. Nature, 441(7094):727-730.
    Melin S. 1993. Simulation of sound propagation in granular media on the connection machine[J]. International Journal of Modern Physics C,4(6):1103-1107.
    Qi C,Xing A G,Yin Y P. 2012. Numerical simulation of dynamic behavior of Donghekou rockslide-debris avalanche[J]. Journal of Engineering Geology,20(3):334-339.
    Ristow G H. 1992. Molecular dynamics simulations of granular materials on the InteriPSC/860[J]. International Journal of Modern Physics C,3(6):1281-1293.
    Song E X. 1990. Elasto-plastic consolidation under steady and cyclic loads[D]. Delft:Delft University of Technology.
    Sulsky D,Chen Z,Schreyer H L. 1994. A particle method for history-dependent materials[J]. Computer Methods in Applied Mechanics and Engineering,118(12):179-196.
    Sun Y J,Song E X. 2015. Simulation of large-displacement landslide by material point method[J]. Chinese Journal of Geotechnical Engineering,37(7):1218-1225.
    Takahashi T. 1991. Debris flow(IAHR-AIRH Monograph Series A)[M]. Balkema, Rotterdam.
    Zhang X,Lian Y P,Liu Y,et al. 2013. Material point method[M]. Beijing:Tsinghua University Press.
    费建波. 2016.

    基于μ(I)颗粒流本构关系的高速远程滑坡模拟方法研究[D]. 北京:清华大学.
    黄河清,赵其华. 2010. 汶川地震诱发文家沟巨型滑坡-碎屑流基本特征及成因机制初步分析[J]. 工程地质学报,18(2):168-177.
    齐超,邢爱国,殷跃平,等. 2012. 东河口高速远程滑坡-碎屑流全程动力特性模拟[J]. 工程地质学报,20(3):334-339.
    孙玉进,宋二祥. 2015. 大位移滑坡形态的物质点法模拟[J]. 岩土工程学报,37(7):1218-1225.
    张雄,廉艳平,刘岩,等. 2013.

    物质点法[M]. 北京:清华大学出版社.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索
    Article views (1093) PDF downloads(31) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint