Volume 27 Issue 5
Oct.  2019
Turn off MathJax
Article Contents


doi: 10.13544/j.cnki.jeg.2019084

the National Natural Science Foundation of China 41661144037

  • Received Date: 2019-05-20
  • Rev Recd Date: 2019-07-20
  • Publish Date: 2019-10-25
  • The probability of the occurrence of coseismic landslides is basically blank. In this study, the Bayesian Probability Method and the Machine Model are used to carry out the real probability of coseismic landslides of China. The first generation of coseismic landslide hazard probability map of China is produced on the basis of nine earthquake cases. They include 1999 Chi-chi, Taiwan, 2005 Kashmir, 2008 Wenchuan, 2010 Yushu, 2013 Lushan, 2013 Minxian, 2014 Ludian, 2015 Nepal, and 2017 Jiuzhaigou earthquakes. Seven of the nine earthquakes occurred in China. The 2005 Kashmir and the 2015 Nepal quakes occurred in China's neighboring areas, which can better control the accuracy of the model. All these earthquake events have detailed and complete coseismic landslide inventories. They include 306 435 landslide polygons. Considering the real earthquake landslide occurrence area, the difference of landslide size, the ratio of landslide to non-slip sample ratio, a total of 5 117 000 samples are selected. A total of 13 factors are selected. They are absolute elevation, relative elevation, slope angle, slope aspect, slope curvature, slope position, topographic humidity index, land cover, vegetation coverage percentage, fault distance, stratum, average annual precipitation, and peak ground acceleration. The Bayesian probability method is combined with the machine learning model to establish a multi-factor impact model for the probability of earthquake-triggered landslide. Then the weights of each continuous factor and the weight of each class of the classification factor are obtained. The model is applied in China considering the peak ground acceleration as the triggering factor of landslides and considering the real probability of earthquake landslides in China under different peak ground accelerations(0.1~1 g, one result per 0.1 g, a total of 10 results). In addition, combined with Seismic Ground Motion Parameters Zonation Map of China, the corresponding true probability of earthquake-triggered landslides of China is generated.
  • loading
  • Basharat M, Rohn J, Baig M S, et al. 2014. Spatial distribution analysis of mass movements triggered by the 2005 Kashmir earthquake in the Northeast Himalayas of Pakistan[J]. Geomorphology, 206:203-214. doi: 10.1016/j.geomorph.2013.09.025
    Close U, McCormick E. 1922. Where the mountains walked[J]. National Geographic Magazine, 41(5):445-464.
    Fan X, Scaringi G, Korup O, et al. 2019. Earthquake-induced chains of geologic hazards:patterns, mechanisms and impacts[J]. Reviews of Geophysics, 57(2):421-503. doi: 10.1029/2018RG000626
    Fick S E, Hijmans R J. 2017. WorldClim 2:new 1-km spatial resolution climate surfaces for global land areas[J]. International Journal of Climatology, 37(12):4302-4315. doi: 10.1002/joc.5086
    Gao MT, Chen G X, Xie F R, et al. 2015. Seismic ground motion parameters zonation map of China(GB 18306-2015)[S]. National Standard of the People's Republic of China, ICS 91.120.35, P 15.
    Gao Q H, Liu H M, Li X L, et al. 2011. Regional risk assessment of earthquake-triggeredsecondary disasters in China[M]. Beijing:China Meteorological Press.
    Harp E L, Keefer D K, Sato H P, et al. 2011. Landslide inventories:The essential part of seismic landslide hazard analyses[J]. Engineering Geology, 122(1-2):9-21. doi: 10.1016/j.enggeo.2010.06.013
    Jarvis A, Reuter H I, Nelson A, et al. 2008. Hole-filled seamless SRTM data V4, International Centre for Tropical Agriculture(CIAT), available from http://srtm.csi.cgiar.org.
    Jenness J, Brost B, Beier P. 2013. Land facet corridor designer: Topographic position index tools[J]. www.jennessent.com.
    Jibson R W. 1993. Predicting earthquake-induced landslide displacements using Newmark's sliding block analysis[J]. Transportation Research Record, 1411:9-17. http://cn.bing.com/academic/profile?id=8c6346df766358525a8bd7debbe2b652&encoded=0&v=paper_preview&mkt=zh-cn
    Keefer D K. 1984. Landslides caused by earthquakes[J]. Geological Society of America Bulletin, 95(4):406-421. doi: 10.1130/0016-7606(1984)95<406:LCBE>2.0.CO;2
    Lanzhou Earthquake Research Institute, State Seismological Bureau, Earthquake Team of Ningxia. 1980. The Haiyuan earthquake of 1920[M]. Beijing:Seismological Press:116-134.
    Lee C T, Huang C C, Lee J F, el al. 2008. Statistical approach to earthquake-induced landslide susceptibility[J]. Engineering Geology, 100(1-2):43-58. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=1e8673765a61853f0812ce6fc9dfc8f0
    Liao H W, Lee C T. 2000. Landslides triggered by the Chi-Chi earthquake[J]. Proceedings of the 21st Asian Conference on Remote Sensing, Taipei, 1-2:383-388.
    Ma S Y, Xu C. 2019. Assessment of co-seismic landslide hazard using the Newmark model and statistical analyses:a case study of the 2013 Lushan, China, MW6.6 earthquake[J]. Natural Hazards, 96(1):389-412. doi: 10.1007/s11069-018-3548-9
    Nowicki M A, Hamburger M W, Allstadt K, et al. 2018. A global empirical model for near-real-time assessment of seismically induced landslides[J]. Journal of Geophysical Research:Earth Surface, 123(8):1835-1859. doi: 10.1029/2017JF004494
    Nowicki M A, Wald D J, Hamburger M W, et al. 2014. Development of a globally applicable model for near real-time prediction of seismically induced landslides[J]. Engineering Geology, 173:54-65. doi: 10.1016/j.enggeo.2014.02.002
    Plafker G, Ericksen G E, Concha J F. 1971. Geological aspects of the May 31, 1970, Peru earthquake[J]. Bulletin of the Seismological Society of America, 61(3):543-578. http://cn.bing.com/academic/profile?id=a129c28083ea957f52b78ceea02826fa&encoded=0&v=paper_preview&mkt=zh-cn
    Tanyas H, Rossi M, Alvioli M, et al. 2019. A global slope unit-based method for the near real-time prediction of earthquake-induced landslides[J]. Geomorphology, 327:126-146. doi: 10.1016/j.geomorph.2018.10.022
    Tateishi R, Uriyangqai B, Al-Bilbisi H, et al. 2011. Production of global land cover data-GLCNMO[J]. International Journal of Digital Earth, 4(1):22-49. doi: 10.1080/17538941003777521
    Tian Y Y, Xu C, Ma S Y, et al. 2019. Inventory and spatial distribution of landslides triggered by the 8th August 2017 MW6.5 Jiuzhaigou earthquake, China[J]. Journal of Earth Science, 30(1):206-217. doi: 10.1007/s12583-018-0869-2
    Tian Y Y, Xu C, Xu X W, et al. 2016. Detailed inventory mapping and spatial analyses to landslides induced by the 2013 MS6.6 Minxian earthquake of China[J]. Journal of Earth Science, 27(6):1016-1026. doi: 10.1007/s12583-016-0905-z
    Tsangaratos P, Ilia I. 2016. Comparison of a logistic regression and Naïve Bayes classifier in landslide susceptibility assessments:The influence of models complexity and training dataset size[J]. Catena, 145:164-179. doi: 10.1016/j.catena.2016.06.004
    Umar Z, Pradhan B, Ahmad A, et al. 2014. Earthquake induced landslide susceptibility mapping using an integrated ensemble frequency ratio and logistic regression models in West Sumatera Province, Indonesia[J]. Catena, 118:124-135. doi: 10.1016/j.catena.2014.02.005
    Wang T, Liu J M, Wu S R, et al. 2018. Report of national earthquake-triggered landslide risk assessment[R]. Beijing: Institute of Geomechanics, Chinese Academy of Geological Sciences: P44.
    Wang T, Wu S R, Shi J S, et al. 2013. Application and validation of seismic landslide displacement analysis based on Newmark model:A case study in Wenchuan earthquake[J]. Acta Geologica Sinica(English Edition), 87 (S):393-397. https://www.researchgate.net/publication/321883426_Application_and_Validation_of_Seismic_Landslide_Displacement_Analysis_Based_on_Newmark_Model_A_Case_Study_in_Wenchuan_Earthquake
    Wang Y, Song C Z, Lin Q G, et al. 2016. Occurrence probability assessment of earthquake-triggered landslides with Newmark displacement values and logistic regression:The wenchuan earthquake, China[J]. Geomorphology, 258:108-119. doi: 10.1016/j.geomorph.2016.01.004
    Wu W Y, Xu C. 2018. A new inventory of landslides triggered by the 2014 Ludian MW6.2 earthquake[J]. Seismology and Geology, 40(5):1140-1148. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dzdz201805014
    Xu C, Xu X W, Dai F C, et al. 2012a. Comparison of different models for susceptibility mapping of earthquake triggered landslides related with the 2008 Wenchuan earthquake in China[J]. Computers & Geosciences, 46:317-329. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=f697d8239be9baa741270e0821c2e018
    Xu C, Dai F C, Xu X W, et al. 2012b. GIS-based support vector machine modeling of earthquake-triggered landslide susceptibility in the Jianjiang River watershed, China[J]. Geomorphology, 145-146:70-80. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=7d5fdb0bd8790d74ae392ba430202eea
    Xu C, Xu X W, Yu G H. 2013a. Landslides triggered by slipping-fault-generated earthquake on a plateau:An example of the 14 April 2010, MS7.1, Yushu, China earthquake[J]. Landslides, 10(4):421-431. doi: 10.1007/s10346-012-0340-x
    Xu C, Xu X W, Dai F C, et al. 2013b. Application of an incomplete landslide inventory, logistic regression model and its validation for landslide susceptibility mapping related to the May 12, 2008 Wenchuan earthquake of China[J]. Natural Hazards, 68(2):883-900. doi: 10.1007/s11069-013-0661-7
    Xu C, Xu X W, Shyu J B H, et al. 2014a. Landslides triggered by the 22 July 2013 Minxian-Zhangxian, China, MW5.9 earthquake:Inventory compiling and spatial distribution analysis[J]. Journal of Asian Earth Sciences, 92:125-142. doi: 10.1016/j.jseaes.2014.06.014
    Xu C, Xu X W, Yao X, et al. 2014b. Three(nearly) complete inventories of landslides triggered by the May 12, 2008 Wenchuan MW7.9 earthquake of China and their spatial distribution statistical analysis[J]. Landslides, 11(3):441-461. doi: 10.1007/s10346-013-0404-6
    Xu C, Xu X W, Shen L L, et al. 2014c. Inventory of landslides triggered by the 2014 MS6.5 Ludian earthquake and its implications on several earthquake parameters[J]. Seismology and Geology, 36(4):1186-1203. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dzdz201404020
    Xu C, Xu X W, Shyu J B H, et al. 2015a. Landslides triggered by the 20 April 2013 Lushan, China, MW6.6 earthquake from field investigations and preliminary analyses[J]. Landslides, 12(2):365-385. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=9a98980d61f3683ff27046b56f4c78ed
    Xu C, Xu X W, Shyu J B H. 2015b. Database and spatial distribution of landslides triggered by the Lushan, China MW6.6 earthquake of 20 April 2013[J]. Geomorphology, 248:77-92. doi: 10.1016/j.geomorph.2015.07.002
    Xu C, Dai F C, Xu X W. 2010. Wenchuan earthquake-induced landslides:an overview[J]. Geological Review, 56(6):860-874. http://cn.bing.com/academic/profile?id=7249eb5b7e20f3bfc511fde231370462&encoded=0&v=paper_preview&mkt=zh-cn
    Xu C, Tian Y Y, Shen L L, et al. 2018. Database of landslides triggered by 2015 Gorkha(Nepal) MW7.8 earthquake[J]. Seismology and Geology, 40(5):1115-1128. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dzdz201805012
    Xu C. 2012. Preliminary evaluation of seismogenic structure and earthquake-triggered landslide hazard related to the April 14, 2010 Yushu earthquake, Qinghai province, China[J]. Engineering Geology Computer Application, (1):1-14.
    Xu C. 2015a. Preparation of earthquake-triggered landslide inventory maps using remote sensing and GIS technologies:Principles and case studies[J]. Geoscience Frontiers, 6(6):825-836. doi: 10.1016/j.gsf.2014.03.004
    Xu C. 2015b. Utilizing coseismic landslides to analyze the source and rupturing process of the 2014 Ludian earthquake[J]. Journal of Engineering Geology, 23(4):755-759. http://en.cnki.com.cn/Article_en/CJFDTOTAL-GCDZ201504030.htm
    Xu X, Han Z, Yang X, et al. 2016. Seismotectonic Map in China and Its Adjacent Regions[M]. Beijing:Seismogical Press.
    Yang W T, Shen L L, Shi P J. 2015. Mapping Landslide Risk of the World[J]. World Atlas of Natural Disaster Risk, 57-66. http://cn.bing.com/academic/profile?id=52d8d7194b625186c9ba45164af8c0ef&encoded=0&v=paper_preview&mkt=zh-cn
    Yin Y P. 2008. Researches on the geo-hazards triggered by Wenchuan earthquake, Sichuan[J]. Journal of Engineering Geology, 16(4):433-444. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=gcdzxb200804001
    高孟潭, 陈国星, 谢富仁, 等. 2015.中国地震动参数区划图(GB 18306-2015)[S].中华人民共和国国家标准, ICS 91.120.35, P 15.
    高庆华, 刘惠敏, 李晓丽, 等. 2011.中国地震次生地质灾害区域风险评估[M].北京:气象出版社.
    国家地震局兰州地震研究所, 宁夏回族自治区地震队. 1980.1920年海原大地震[M].北京:地震出版社:116-134.
    王涛, 刘甲美, 吴树仁, 等. 2018.全国地震滑坡危险性评价报告[R].北京: 中国地质科学院地质力学研究所: 1-44.
    吴玮莹, 许冲. 2018.2014年中国鲁甸MW6.2地震触发滑坡新编目[J].地震地质, 40(5):1140-1148. http://www.cnki.com.cn/Article/CJFDTotal-DZDZ201805014.htm
    许冲, 戴福初, 徐锡伟. 2010.汶川地震滑坡灾害研究综述[J].地质论评, 56(6):860-874. http://d.old.wanfangdata.com.cn/Periodical/dzlp201006013
    许冲, 田颖颖, 沈玲玲, 等. 2018.2015年尼泊尔廓尔喀MW7.8地震滑坡数据库[J].地震地质, 40(5):1115-1128. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dzdz201805012
    许冲, 徐锡伟, 沈玲玲, 等. 2014.2014年鲁甸MS6.5地震触发滑坡编录及其对一些地震参数的指示[J].地震地质, 36(4):1186-1203. doi: 10.3969/j.issn.0253-4967.2014.04.020
    许冲. 2012.青海玉树2010-4-14地震发震构造与地震滑坡危险性初步评价[J].工程地质计算机应用, (1):1-14. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK201201409603
    许冲. 2015.利用同震滑坡分析2014年鲁甸地震震源性质与破裂过程[J].工程地质学报, 23(4):755-759. http://www.gcdz.org/CN/abstract/abstract11746.shtml
    殷跃平. 2008.汶川8级地震地质灾害研究[J].工程地质学报, 16 (4):433-444. doi: 10.3969/j.issn.1004-9665.2008.04.001
  • 加载中


    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索


    Article views (2221) PDF downloads(222) Cited by()
    Proportional views


    DownLoad:  Full-Size Img  PowerPoint