Volume 27 Issue s1
Dec.  2019
Turn off MathJax
Article Contents
GAO Ping, WANG Guijun, CHEN Yanguo. 2019: ENGINEERING APPLICATION AND SHEAR STRENGTH PARAMETER ESTIMATION OF STRATIFIED ROCK MASS WITH SHEAR ZONE. JOURNAL OF ENGINEERING GEOLOGY, 27(s1): 257-261. doi: 10.13544/j.cnki.jeg.2019099
Citation: GAO Ping, WANG Guijun, CHEN Yanguo. 2019: ENGINEERING APPLICATION AND SHEAR STRENGTH PARAMETER ESTIMATION OF STRATIFIED ROCK MASS WITH SHEAR ZONE. JOURNAL OF ENGINEERING GEOLOGY, 27(s1): 257-261. doi: 10.13544/j.cnki.jeg.2019099

ENGINEERING APPLICATION AND SHEAR STRENGTH PARAMETER ESTIMATION OF STRATIFIED ROCK MASS WITH SHEAR ZONE

doi: 10.13544/j.cnki.jeg.2019099
  • Received Date: 2019-05-31
  • Rev Recd Date: 2019-07-03
  • As a kind of special weak structural plane, shear zone has aroused attention and deep understanding of the influence on engineering construction. Rock mass of dam foundation with shear zone of Guxian hydro-junction project is taken as the research object, this paper analyzed the distribution characteristics of shear zone, and determined parameters of shear strength by large in-situ shear test. In the meantime, according to the established calculation formulae of geological strength index(GSI)for rock masses estimated by ultrasonic velocity of rock mass, the rock mass mechanical parameters are predicted by Hoek-Brown criterion. The result shows that equivalent fraction coefficient from Hoek-Brown criterion is lower than test value and cohesion force is far greater than that from shearing test. It is shown by error analysis that the difference between experiment values and estimated ones is mostly induced by the span of minimum principal stress used in Hoek-Brown criterion. For this situation, some cautions and corresponding resolve methods while using Hoek-Brown criterion are reminded. In addition, the proposed method provides a new approach to determine the mechanical parameters of stratified rock mass with shear zone, when test data are scant.
  • loading
  • Barton N. 2002. Some new Q-value correlations to assist in site characterization and tunnel design[J]. International Journal of Rock Mechanics and Mining Sciences,39(2):185-216.
    Bieniawski Z T. 1978. Determining rock mass deformability:experience from case histories[J]. International Journal of Rock Mechanics and Mining Sciences and Geomechanics Abstracts,15(5):237-247.
    Chen Z J,Sun Y X. 2000. Weakening treatment to the mechanic parameters of fissured rock mass[J]. Jiangsu Geology,24(1):36-38.
    Gergi M. 1970. On the valuation of strength and resistance condition of the rock in natural rock mass[C]//Proceedings of the Second Congress of the International Society for Rock Mechanics. Belgrade:Yugoslavian Science Press, 365-374.
    Hoek E,Brown E T. 1980a. Empirical strength criterion for rock masses[J]. Journal of Geotechnical and Geoenvironmental Engineering, ASCE,106(9):1013-1035.
    Hoek E,Brown E T. 1980b. Underground excavations in rocks[M]. London:Institution of Mining and Metallurgy, 527.
    Hoek E,Carranza-torres C,Corkum B. 2002. Hoek-Brown failure criterion-2002 edition[C]//Proceedings of the North American Rock Mechanics Society NARMS-TAC 2002. Toronto:University of Toronto Press, 267-273.
    Hoek E,Wood D,Shah S. 1992. A modified Hoek-Brown criterion for jointed rock masses[C]//HUDSON J A ed. Proceedings of the Rock Characterization, Symposium of ISRM. London:British Geotechnical Society, 209-214.
    Hoek E. 1994. Strength of rock and rock masses[J]. International Society for Rock Mechanics News Journal,2(2):4-16.
    Nicholson G A,Bieniawski Z T. 1990. A nonlinear deformation modulus based on rock mass classification[J]. Geotechnical and Geological Engineering,8(3):181-202.
    Serafim J L,Pereira J P. 1983. Consideration of the geomechanical classification of Bieniawski[C]//Proceedings of International Symposium on Engineering Geology and Underground Construction Lisbon:Portugal, 33-44.
    Song Y H,Ju G H,Sun M. 2011. Relationship between wave velocity and deformation modulus of rock masses[J]. Rock and Soil Mechanics,32(5):1507-1567.
    Xiang W,Liu J H,Jia H L,et al. 2016. Development mechanism of shear zones and stability of dam foundation of a hydropower station located in yangtze river[J]. Journal of Engineering Geology,24(5):788-797.
    Xu R C. 2003. Red beds and dam[M]. Wuhan:China University of Geosciences Press.
    Zhou Y F,Deng J H. 2016. GSI system for rock blocks based on longitudinal wave velocity[J]. Chinese Journal of Rock Mechanics and Engineering,35(5):948-956.
    陈志坚,孙英学. 2000. 裂隙岩体力学参数的弱化处理[J]. 江苏地质,24(1):36-38.
    宋彦辉,巨广宏,孙苗. 2011. 岩体波速与坝基岩体变形模量关系[J]. 岩土力学,32(5):1507-1567.
    项伟,柳景华,贾海梁,等. 2016. 长江某水电站坝基剪切带发育规律与抗滑稳定研究[J]. 工程地质学报,24(5):788-797.
    徐瑞春. 2003.

    红层与大坝[M]. 武汉:中国地质大学出版社.
    周元辅,邓建辉. 2016. 基于纵波波速的块状岩体GSI系统[J]. 岩石力学与工程学报,35 (5):948-956.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索
    Article views (848) PDF downloads(23) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint