Volume 27 Issue s1
Dec.  2019
Turn off MathJax
Article Contents
HOU Yifei, LI Ping, XIAO Tao, HAO Ruihua. 2019: REVIEW ON STRENGTHENING LOESS WITH CURING AGENTS. JOURNAL OF ENGINEERING GEOLOGY, 27(s1): 481-488. doi: 10.13544/j.cnki.jeg.2019119
Citation: HOU Yifei, LI Ping, XIAO Tao, HAO Ruihua. 2019: REVIEW ON STRENGTHENING LOESS WITH CURING AGENTS. JOURNAL OF ENGINEERING GEOLOGY, 27(s1): 481-488. doi: 10.13544/j.cnki.jeg.2019119


doi: 10.13544/j.cnki.jeg.2019119

This research is supported by the Ministry of Education Key Laboratory of Western China's Mineral Resource and Geological Engineering(Grant No.300102269505),the Shaanxi Key Laboratory of Loess Mechanics and Engineering(Grant No. LME201803) and the China Postdoctoral Science Foundation(Grant No.2019M653883XB)

  • Received Date: 2019-05-31
  • Rev Recd Date: 2019-07-03
  • Special soil genesis, grain-size distribution and mineral composition render loess soils poor engineering properties, such as high compressibility and strong collapsibility. This bad characteristic leads to frequent disasters in loess area, and loess needs to be strengthened in order to meet the needs of construction. Compared with traditional strengthening methods, the use of curing agent to reinforce loess soils has advantages of time-saving, labor-saving, low cost and good effect. For this reason, this method has received extensive attention. In this paper, a variety of curing agents which were found to be capable of improving the engineering properties of loess soils effectively are summarized, including nanomaterials, inorganic hardeners, organic polymer materials, biological enzymes and mineralized bacteria. The composition, reinforcement mechanism and reinforcement effect of each curing agent are detailed. Because of small size and large specific surface area, nanomaterials would wrap soil particles to form aggregates of small sizes, which would fill inter-particle or inter-aggregate pores, thus the soil density and uniformity are increased. Inorganic hardeners play the role of cementing and filling in the soil. Organic polymer materials destroy the weak bound water film on the surface of soil particles by ion exchange, the attraction between particles is then improved and the soil density is increased. In addition, organic polymer materials are cements and fillings in the soil structure. Biological enzymes improve the activity of organic macromolecules in the soil through catalysis, resulting inorganic films of cementing and water-blocking functions. Calcium carbonate, the metabolite of mineralized bacteria, would fill soil pores and connect soil particles. On the basis of an insight understanding of the existing researches, we believe that the study of strengthening loess should be paid more attention to:(1)timeliness of the reinforcement effect of curing agents; (2)the application of curing agents in loess engineering, including the construction technology taking account of the difference in engineering conditions; (3)the interaction between environmental factors and strengthening loess with curing agents.
  • loading
  • Bell F G. 1994. An assessment of cement-PFA and lime-PFA used to stabilize clay-size materials[J]. Bulletin of the International Association of Engineering Geology,49(1):25-32.
    Bo S M. 2016. Strength characteristics and curing mechanism of loess solidified by nano-silica solution[D]. Lanzhou:Lanzhou University.
    Chen R F,Tian G Y,Mi D Y,et al. 2018. Study on basic engineering properties of red mud modified loess[J]. Rock and Soil Mechanics,9 (S1):89-97.
    Chen X L. 2007. Study on the application of (TerraZyme) soil solidification technology in rural highway[D]. Changsha:Hunan University.
    Cheng J M. 2014. Experimental study on strengthening loess slope with new curing agent[D]. Taiyuan:Taiyuan University of Technology.
    Dong X,Zhang Q,Kou X,et al. 2016. Experimental study on dynamic parameters of red mud loess complex[J]. Journal of Southeast University(Natural Science Edition),46 (S1):135-141.
    Du Y J,Zhu J H. 2004. Experimental study on the effect of soil curing agent on the curing properties of different soils[J]. Agricultural Research in Arid Areas,(4):229-231.
    Fan H H,Gao J E,Wu P,et al. 2010. Physicochemical effect of cement-based soil curing agent on soil[J]. Rock and Soil Mechanics,31(12):3741-3745.
    He Z Q,Fan H H,Wang J Q,et al. 2017. Experimental study on engineering performance of loess strengthened with lignin[J]. Rock and Soil Mechanics,38(3):731-739.
    Hou X,Ma W,Li G Y,et al. 2017. Effect of lignosulfonate on mechanical properties of Lanzhou loess[J]. Rock and Soil Mechanics,38 (S2):18-26.
    Kamon M,Huanda G,Masahiro I. 2001. Improvement of mechanical properties of ferrum lime stabilized soil with the addition of aluminum sludge[J]. Materials Science Research International,7(1):47-53.
    Kong R,Zhang F,Wang G,et al. 2018. Stabilization of loess using nano-SiO2[J]. Materials, 11(6):1014.
    Latifi N,Rashid A S A,Siddiqua S,et al. 2015. Micro-structural analysis of strength development in low-and high swelling clays stabilized with magnesium chloride solution-A green soil stabilizer[J]. Applied Clay Science,118:195-206.
    Li M D,Lin L,Zhang Z D,et al. 2016. Progress, prospect and engineering application technical design of soil improvement by microbial mineralized calcium carbonate[J]. Journal of Civil Engineering,49(10):80-87.
    Li P,Vanapalli S K,Li T L. 2016. Review of collapse triggering mechanism of collapsible soils due to wetting[J]. Journal of Rock Mechanics and Geotechnical Engineering,8:256-274.
    Li P,Xie W L,Ronald Y S P,et al. 2019. Microstructural evolution of loess soils from the loess plateau of China[J]. Catena,173:276-288.
    Liang W Q,He Z,Li Y J,et al. 1995. Study on the properties and curing mechanism of soil curing agent[J]. Journal of Wuhan University of Water Conservancy and Electric Power,(6):675-679.
    Liu J,Chen X M,Zhang F J,et al. 2002. Study on synthesis and curing mechanism of polymer soil curing agent[J]. Materials Science and Engineering,(2):230-234.
    Liu S J,Fan H H,Shi X,et al. 2014. Study on durability of soil solidified by BCS soil curing agent[J]. Journal of Northwest University of Agriculture and Forestry Science and Technology(Natural Science Edition),42(12):214-220.
    Lü Q,Chang C,Zhao B,et al. 2018. Loess soil stabilization by means of SiO2 nanoparticles[J]. Soil Mechanics and Foundation Engineering,4(6):409-413.
    Ma W J,Wang B l, Wang X,et al. 2018. Experimental study on mechanical properties of modified loess[J]. Water Conservancy and Hydropower Technology,49(10):150-156.
    Medows A,Meadows P S,Wood D M,et al. 1994. Microbiological effects on slope stability:an experimental analysis[J]. Sedimentology,41(3):423-435.
    Peng J,He X,Liu Z M,et al. 2016. Experimental study on soil strengthening by microbial induced calcium carbonate deposition at low temperature[J]. Journal of Geotechnical Engineering,38(10):1769-1774.
    Peng Y,Zhang H Y,Lin C B,et al. 2017. Engineering properties and modification mechanism of loess modified by anti-thinning curing agent[J]. Journal of Rock Mechanics and Engineering,36(3):762-772.
    Qu Y X,Guan W,Zhang Y S,et al. 2000. Study on material composition, engineering characteristics, prevention and utilization of solid waste(Red Mud) in aluminum smelting industry[J]. Journal of Engineering Geology,(3):296-305.
    Shan Z J. 2010. Study on the mechanism of strengthening loess slope with EN-1 ion curing agent[D]. Beijing:University of Chinese Academy of Sciences.
    Wan J H,Sun H H,Wang Y Y,et al. 2009. Effect of red mud on mechanical properties of loess-containing aluminosilicate based cementitious materials[J]. Materials Science Forum, 610-613:155-160.
    Wang S J,Han W F,Wang Y M. 2003. Experimental study on strengthening loess with LD geotechnical binder[J]. Journal of Rock Mechanics and Engineering,(S2):2888-2893.
    Wang Y M,Gao L C. 2012. Experimental study on Chemical improvement of Loess[J]. Journal of Engineering Geology,20(6):1071-1077.
    Wang Y M,Yang Z C,Chen W W,et al. 2005. Discussion on strength and mechanism of loess strengthened with new polymer material SH[J]. Journal of Rock Mechanics and Engineering,(14):2554-2559.
    Yao A L,Yan X L,Liang C Y,et al. 1998. Experimental study on road performance of ISS soil stabilizer[J]. Journal of Xi'an Highway Jiaotong University,(1):15-19.
    Zhang H Y,Peng Y,Wang X W,et al. 2016. Study on water loss ability of loess modified by anti-hydrophobic curing agent[J]. Rock and Soil Mechanics,37 (S1):19-26.
    Zhang L J,Li Y,Liu H H. 2016. Experimental study on strengthening loess with composite BTS curing agent[J]. Subgrade Engineering,(6):125-128.
    Zhang L P,Zhang X C,Sun Q. 2009. Engineering characteristics and influencing factors of loess strengthened with EN-1 curing agent[J]. Science of Soil and Water Conservation in China,7(4):60-65.
    Zhang L P,Zhang X C,Sun Q. 2009. Study on improvement of shear strength and impermeability of loess by two kinds of ion curing agents[J]. Water Saving Irrigation,(5):35-38.
    Zhang W F,Liu Q B,Cai S T. 2009. Experimental study on strengthening loess with HEC curing agent[J]. People's Yangtze River,40(3):56-59.
    卜思敏. 2016.

    纳米硅溶胶固化黄土的强度特性及其固化机理[D]. 兰州:兰州大学.
    陈瑞锋,田高源,米栋云,等. 2018. 赤泥改性黄土的基本工程性质研究[J]. 岩土力学,39 (S1):89-97.
    陈湘亮. 2007.

    泰然酶(TerraZyme)固化土技术在乡村公路中的应用研究[D]. 长沙:湖南大学.
    程佳明. 2014.

    新型固化剂加固黄土边坡技术试验研究[D]. 太原:太原理工大学.
    单志杰. 2010. EN-1离子固化剂加固黄土边坡机理研究[D]. 北京:中国科学院大学.
    董晓强,张强,寇晓辉,等. 2016. 赤泥黄土复合体的动参数试验研究[J]. 东南大学学报(自然科学版),46 (S1):135

    杜应吉,朱建宏. 2004. 土壤固化剂对不同土质固化性能影响的试验研究[J]. 干旱地区农业研究,(4):229-231.
    樊恒辉,高建恩,吴普特,等. 2010. 水泥基土壤固化剂固化土的物理化学作用[J]. 岩土力学,31(12):3741-3745.
    贺智强,樊恒辉,王军强,等. 2017. 木质素加固黄土的工程性能试验研究[J]. 岩土力学,38(3):731-739.
    侯鑫,马巍,李国玉,等. 2017. 木质素磺酸盐对兰州黄土力学性质的影响[J]. 岩土力学,38 (S2):18-26.
    李明东,Lin Li,张振东,等. 2016. 微生物矿化碳酸钙改良土体的进展、展望与工程应用技术设计[J]. 土木工程学报,49(10):80-87.
    梁文泉,何真,李亚杰,等. 1995. 土壤固化剂的性能及固化机理的研究[J]. 武汉水利电力大学学报,(6):675-679.
    刘瑾,陈晓明,张峰君,等. 2002. 高分子土固化剂的合成及固化机理研究[J]. 材料科学与工程,(2):230-234.
    刘世皎,樊恒辉,史祥,等. 2014. BCS土壤固化剂固化土的耐久性研究[J]. 西北农林科技大学学报(自然科学版),42(12):214

    马文杰,王博林,王旭,等. 2018. 改性黄土的力学特性试验研究[J]. 水利水电技术,49(10):150-156.
    彭劼,何想,刘志明,等. 2016. 低温条件下微生物诱导碳酸钙沉积加固土体的试验研究[J]. 岩土工程学报,38(10):1769-1774.
    彭宇,张虎元,林澄斌,等. 抗疏力固化剂改性黄土工程性质及其改性机制[J]. 岩石力学与工程学报,36(3):762-772.
    曲永新,关文章,张永双,等. 2000. 炼铝工业固体废料(赤泥)的物质组成与工程特性及其防治利用研究[J]. 工程地质学报,(3):296-305.
    王生俊,韩文峰,王银梅. 2003. LD岩土胶结剂加固黄土试验研究[J]. 岩石力学与工程学报,(S2):2888-2893.
    王银梅,高立成. 2012. 黄土化学改良试验研究[J]. 工程地质学报,20(6):1071-1077.
    王银梅,杨重存,谌文武,等. 2005. 新型高分子材料SH加固黄土强度及机理探讨[J]. 岩石力学与工程学报,(14):2554-2559.
    姚爱玲,延西利,梁春雨,等. 1998. ISS土壤稳定剂路用性能的试验研究[J]. 西安公路交通大学学报,(1):15-19.
    张虎元,彭宇,王学文,等. 2016. 抗疏力固化剂改性黄土进失水能力研究[J]. 岩土力学,37 (S1):19-26.
    张丽娟,李渊,刘洪辉. 2016. 复合BTS固化剂加固黄土的试验研究[J]. 路基工程,(6):125-128.
    张丽萍,张兴昌,孙强. 2009.2种离子固化剂改善黄土抗剪强度和抗渗性的研究[J]. 节水灌溉,(5):35-38.
    张丽萍,张兴昌,孙强. 2009. EN-1固化剂加固黄土的工程特性及其影响因素[J]. 中国水土保持科学,7(4):60-65.
    张伟锋,刘清秉,蔡松桃. 2009. 用HEC固化剂加固黄土的试验研究[J]. 人民长江,40 (3):56-59.
  • 加载中


    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索
    Article views (1131) PDF downloads(41) Cited by()
    Proportional views


    DownLoad:  Full-Size Img  PowerPoint