Citation: | CHE Wenchao, QIN Shengwu, MIAO Qiang, SU Gang, CHEN Yang, YAO Jingyu. 2020: RESEARCH ON FACTOR CLASSIFICATION METHOD OF LANDSLIDE SUSCEPTIBILITY MAPPING. JOURNAL OF ENGINEERING GEOLOGY, 28(S1): 116-124. doi: 10.13544/j.cnki.jeg.2020-293 |
Aril A,Tetsuya K,Yoshinori S. 2018. Comparison of GIS-based landslide susceptibility models using frequency ratio, logistic regression, and artificial neural network in a tertiary region of Ambon, Indonesia[J]. Geomorphology,318:101-111.
|
Coles A R,Quintero-Angel M. 2018. From silence to resilience:prospects and limitations for incorporating non-expert knowledge into hazard management[J]. Taylor & Francis,17(2):128-145.
|
Guo J H,Liu C Q,Liu C. 2017. The Construction of standard driving cycle based on genetic algorithm optimization[J]. Science Technology and Engineering,17(15):327-333.
|
Huang R Q,Li W L. 2008. Study on the development and distribution of geological disasters triggered by the "5.12" Wenchuan Earthquake[J]. Chinese Journal of Rock Mechanics and Engineering,27(12):2585-2592.
|
Hu X Y,Qin S W,Dou Q,et al. 2019. Susceptibility analysis of debris flow based on GIS and random forest——a case study of a mountainous area in northern taonan city, Jilin province[J]. Bulletin of Soil and Water Conservation,39(5):204-210.
|
Li N Q,Xu G Y. 2020. Grid analysis of land use based on natural breaks(jenks) classification[J]. Bulletin of Surveying and Mapping,(4):106-110.
|
Liu F,Qin S W,Qiao S S,et al. 2019. Slope geological hazards susceptibility evaluation based on neural network model:a case study from Yongji county of Jilin province[J]. Global Geology,38(4):1166-1176.
|
Luo L G,Pei X J,Huang R Q,et al. 2020. Landslide susceptibility assessment by GIS based on certainty factor and logistic regression model in Jiuzhaigou scenic area[J]. Journal of Engineering Geology, https://doi.org/10.13544/j.cnki.jeg.2019-202.
|
Platt J C. 2000. Probabilistic outputs for support vector machines and comparisons to regularized likelihood methods[J]. Advances in Large Margin Classifiers,10(4):61-74.
|
Tan L,Chen G,Wang S Y,et al. 2014. Landslide susceptibility mapping based on logistic regression and support vector machine[J]. Journal of Engineering Geology,22(1):56-63.
|
Wang N Q,Guo Y J,Liu T M,et al. 2019. Landslide susceptibility assessment based on support vector machine model[J]. Science Technology and Engineering,19(35):70-78.
|
Xu Y Z,Lu Y N,Li D Y,et al. 2106. GIS and information model based landslide susceptibility assessment in granite area of Guangxi province[J]. Journal of Engineering Geology,24(4):693-703.
|
Yang G,Xu P H,Cao C,et al. 2019. Assessment of regional landslide susceptibility based on combined model of certainty factor method[J]. Journal of Engineering Geology,27(5):1153-1163.
|
Yang Q,Ye Z N,Gao Y L,et al. 2018. Dataset of geological disaster survey in Yanzi River Basin, upper reaches of Jialing River in 2015[J]. Geology in China,45 (S2):47-55.
|
Zêzere J L,Pereira S,Melo R,et al. 2017. Mapping landslide susceptibility using data-driven methods[J]. Science of The Total Environment,589:250-267.
|
Zhang Q K,Ling S Y,Li X N,et al. 2020. Comparison of landslide susceptibility mapping rapid assessments in Jiuzhaigou county, Sichuan province, China[J]. Chinese Journal of Rock Mechanics and Engineering, https://doi.org/10.13722/j.cnki.jrme.2020.0029.
|
Zhang W,Bai S B,Wang J. 2010. Regional landslide susceptibility assessments based expert experience——a case study of Gaopingpu reservoir area, Pingwu county, Sichuan province[J]. Journal of Geological Hazards and Environment Preservation,21 (4):20-23,37.
|
Zhang Y X,Lan H X,Li L P,et al. 2019. Combining statistical model and physical model for refined assessment of geological disaster——a case study of Longshan community in Fujian province[J]. Journal of Engineering Geology,27(3):608-622.
|
Zhu A X,Pei T,Qiao J P,et al. 2006. A landslide susceptibility mapping approach using expert knowledge and fuzzy logic under GIS[J]. Progress in Geography,25 (4):1-12, 137.
|
Zhu C H,Zhang J J,Ma D H,et al. 2020. Comprehensive analysis to the risk of landslides in the post-earthquake area based on DinSAR-BP neural networks[J]. Journal of Engineering Geology, https://doi.org/10.13544/j.cnki.jeg.2019-132.
|
郭建华,刘初群,刘翠. 2017. 基于遗传算法优化的城市标准循环工况构建[J]. 科学技术与工程,17(15):327-333.
|
黄润秋,李为乐. 2008. "5·12"汶川大地震触发地质灾害的发育分布规律研究[J]. 岩石力学与工程学报,27(12):2585-2592.
|
扈秀宇,秦胜伍,窦强,等. 2019. 基于GIS和随机森林模型的泥石流敏感性分析——以吉林省洮南市北部山区为例[J]. 水土保持通报,39(5):204-210.
|
李乃强,徐贵阳. 2020. 基于自然间断点分级法的土地利用数据网格化分析[J]. 测绘通报,(4):106-110.
|
刘飞,秦胜伍,乔双双,等. 2019. 基于神经网络模型的斜坡地质灾害易发性评价:以吉林永吉为例[J]. 世界地质,38(4):1166-1176.
|
罗路广,裴向军,黄润秋,等. 2020. GIS支持下CF与Logistic回归模型耦合的九寨沟景区滑坡易发性评价[J]. 工程地质学报,https://doi.org/10.13544/j.cnki.jeg.2019
-202.
|
谭龙,陈冠,王思源,等. 2014. 逻辑回归与支持向量机模型在滑坡敏感性评价中的应用[J]. 工程地质学报,22(1):56-63.
|
王念秦,郭有金,刘铁铭,等. 2019. 基于支持向量机模型的滑坡危险性评价[J]. 科学技术与工程,19(35):70-78.
|
许英姿,卢玉南,李东阳,等. 2106. 基于GIS和信息量模型的广西花岗岩分布区滑坡易发性评价[J]. 工程地质学报,24(4):693-703.
|
杨光,徐佩华,曹琛,等. 2019. 基于确定性系数组合模型的区域滑坡敏感性评价[J]. 工程地质学报,27(5):1153-1163.
|
杨强,叶振南,高幼龙,等. 2018.2015年嘉陵江上游燕子河流域地质灾害调查数据集[J]. 中国地质,45 (S2):47-55.
|
张玘恺,凌斯祥,李晓宁,等. 2020. 九寨沟县滑坡灾害易发性快速评估模型对比研究[J]. 岩石力学与工程学报,https://doi.org/10.13722/j.cnki.jrme.2020.
0029.
|
张文,白世彪,王建. 2010. 基于专家经验值的滑坡易发性评价——以四川平武高坪铺库区为例[J]. 地质灾害与环境保护,21 (4):20-23,37.
|
仉义星,兰恒星,李郎平,等. 2019. 综合统计模型和物理模型的地质灾害精细评估——以福建省龙山社区为例[J]. 工程地质学报,27(3):608-622.
|
朱阿兴,裴韬,乔建平,等. 2006. 基于专家知识的滑坡危险性模糊评估方法[J]. 地理科学进展,25 (4):1-12,137.
|
朱崇浩,张建经,马东华,等. 2020. 基于DinSAR-BP神经网络的震后区域滑坡危险性综合评价研究[J]. 工程地质学报,https://doi.org/10.13544/j.cnki.jeg.2019
-132.
|