Volume 28 Issue S1
Oct.  2020
Turn off MathJax
Article Contents
ZHANG Qing, LI Yunfeng, HOU Lili, ZHOU Xiaoping, LU Yuanzhi, YANG Yang. 2020: RESEARCH ON DYNAMIC TRIAXIAL TEST OF SAND LIQUEFACTION BASED ON MICROSTRUCTURE. JOURNAL OF ENGINEERING GEOLOGY, 28(S1): 19-24. doi: 10.13544/j.cnki.jeg.2020-323
Citation: ZHANG Qing, LI Yunfeng, HOU Lili, ZHOU Xiaoping, LU Yuanzhi, YANG Yang. 2020: RESEARCH ON DYNAMIC TRIAXIAL TEST OF SAND LIQUEFACTION BASED ON MICROSTRUCTURE. JOURNAL OF ENGINEERING GEOLOGY, 28(S1): 19-24. doi: 10.13544/j.cnki.jeg.2020-323

RESEARCH ON DYNAMIC TRIAXIAL TEST OF SAND LIQUEFACTION BASED ON MICROSTRUCTURE

doi: 10.13544/j.cnki.jeg.2020-323
Funds:

This research is supported by the Project of China Geological Survey (Grant No. DD20189250)

  • Received Date: 2020-06-30
  • Rev Recd Date: 2020-07-26
  • The influence factors of liquefaction resistance of special sand(silt sand, clayey sand and silt sand) in Anqing area were studied by dynamic triaxial test and SEM. The effects of particle size and gradation, particle content and microstructure on sand liquefaction were studied. Research shows:the larger the skeleton particles, the stronger the resistance to liquefaction; the more uniform the particles in the sand, that is,the better the gradation of the soil, the stronger the sand's resistance to liquefaction; with the increase of fine particle mass content, the anti-liquefaction capacity of sand decreases first and then increases, and the corresponding fine particle content content of different types of sands is the weakest. This is mainly due to the different content of fine particles. When the content of fine particles is small, it mainly plays the role of lubrication, which is unfavorable to the liquefaction resistance of sand.
  • loading
  • Amini F,Qi G Z. 2000. Liquefaction testing of stratified silty sands[J]. Journal of Geotechnical and Geoenviron-mental Engineering, ASCE,126(3):208-217.
    Cao P,Du Y K. 2019. Experimental study on wetting deformation and strength behavior of a red sandstone weathered soil[J]. Journal of Engineering Geology,27(4):819-824.
    Chung K Y C,Wong I H. 1982. 3 Liquefaction potential of soils with plasticfines[C]//Soil Dynamics & Earthquake Engineering. Proceedings of the 2nd International Conference. Rotterdam:Balkema:887-897.
    Huang X W,Tong H W,Li S B. 2018. Dynamic triaxial test investigation of silty sand anti-liquefaction performance[J]. Science Technology and Engineering,18(18):252-256.
    Ishihara K. 1993. Liquefaction and flow failure during earthquake[J]. Géotechnique, 43(3); 351-415.
    Li G S,Pan Y J,Meng X H. 2019. Comparative experimental analysis of physical and mechanical properties of saturated soft soil under different sampling methods[J]. Journal of Engineering Geology,27(3):550-558.
    Li R S,Chen L W,Yuan X M. 2017. Experimental study on influences of different loading frequencieson dynamic modulus and damping ration[J]. Chinese Journal of Geotechnical Engineering,39(1):71-80.
    Lü X L,Zhang B,Zhang P. 2019. Laboratory ring shear tests for shear strength of sand and clay mixtures[J]. Journal of Engineering Geology,27(5):1110-1115.
    Ma Y T,Cui H H,Liu J K, et al. 2017. Study on dynamic behavior of subgrade silty cays underfreeze-thaw cycles[J]. Low Temper Ature Architecture Technology,39(1):81-83.
    Pradhan T B S. 1997. Liquefaction behavior of sandy soil sandwiched by clay layers[C]//Proceedings of the 7th(1997)International Offshore and Polar Engineering.
    Seed H B,Idriss I M. 1971. Simplified procedure for evaluating soil liquefaction potential[J]. Journal of the Soil Mechanics and Foundations Division,97(9):1249-1273.
    Seed H B,Lee K L. 1966. Liquefaction of saturated sands during cyclic loading[J]. Journal of the Soil Mechanics and Foundation Division, ASCE, 92(6); 105-124.
    Wu B,Sun D A. 2013. Study of liquefaction characteristics of unsaturated silt[J]. Rock and Soil Mechanics,34(2):411-416.
    Xie Q F,Liu G B,Fan S T,et al. 2017. A study of dynamic characteristics of the saturated remolded clayey silt under circle load[J]. Hydrogeology & Engineering Geology,(1):78-83.
    Yoshimine M,Koike R. 2005. Liquefaction of clean sand with stratified structure due to segregation of particle size[J]. Soils and Foundations,45(4):89-98.
    Zhang X P,Niu X,Zhao A S,et al. 2011. Preliminary study on soil dynamic parameters in Dalian area[J]. Earthquake Research in China,27(3):280-289.
    Zhang Y M,Cheng Z L,Wan L L,et al. 2018. Experimental study on liquefaction characteristics of saturated silty soil at Yellow River delta[J]. Journal of Engineering Geology,26(2):451-458.
    Zhou J,Chen X L,Yang Y X,et al. 2011. Study of liquefaction characteristics of saturated stratified sands by dynamic triaxial test[J]. Rock and Soil Mechanics, 4(32):967-972.
    Zhu G B. 2019. Mechanism, discrimination and hazard assessment of seismic liquefaction[J]. Development and Innovation,2:233-235.
    曹培,杜雨坤. 2019. 红砂岩风化土湿化特性的三轴试验研究[J]. 工程地质学报,27(4):819-824.
    黄宣维,童华炜,李树斌. 2018. 淤泥质砂土抗液化性能的动三轴试验研究[J]. 科学技术与工程,18(18):252-256.
    李高山,潘永坚,孟叙华. 2019. 不同取样方法下饱和软土物理力学性状对比试验分析[J]. 工程地质学报,27(3):550-558.
    李瑞山,陈龙伟,袁晓铭,等. 2017. 荷载频率对动模量阻尼比影响的试验研究[J]. 岩土工程学报,39(1):71-80.
    吕玺琳,张滨,章澎. 2019. 砂与黏土混合物强度特性环剪试验研究[J]. 工程地质学报,27(5):1110-1115.
    马玉涛,崔宏环,刘建坤,等. 2017. 冻融循环后路基粉质黏土动力特性研究[J]. 低温建筑技术,39(1):81-83.
    吴波,孙德安. 2013. 非饱和粉土的液化特性研究[J]. 岩土力学,34(2):411-416.
    谢琦峰,刘干斌,范思婷,等. 2017. 循环荷载下饱和重塑黏质粉土的动力特性研究[J]. 水文地质工程地质,(1):78-83.
    张小平,牛雪,赵安生,等. 2011. 大连地区场地土动力学参数初步研究[J]. 中国地震,27(3):280-289.
    张艳美,程志良,万丽丽,等. 2018. 黄河三角洲饱和粉质土液化性能试验研究[J]. 工程地质学报,26(2):451-458.
    周健,陈小亮,等. 2011. 饱和层状砂土液化特性的动三轴试验研究[J]. 岩土力学, 4(32):967-972.
    朱贵兵. 2019. 地震液化机理、判别及其危害性评价[J]. 发展与创新,2:233-235.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索
    Article views (680) PDF downloads(49) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint