Volume 28 Issue S1
Oct.  2020
Turn off MathJax
Article Contents
FAN Ya, HU Jinshan. 2020: OPTIMIZATION TREATMENT OF INTAKE SLOPE AND TOWER FOUNDATION OF TUNNEL SPILLWAY FOR EXTRA-LARGE POWER STATION IN WEST MOUNTAIN CANYON AREA—TAKING CHANGHEBA HYDROPOWER STATION AS AN EXAMPLE. JOURNAL OF ENGINEERING GEOLOGY, 28(S1): 225-229. doi: 10.13544/j.cnki.jeg.2020-332
Citation: FAN Ya, HU Jinshan. 2020: OPTIMIZATION TREATMENT OF INTAKE SLOPE AND TOWER FOUNDATION OF TUNNEL SPILLWAY FOR EXTRA-LARGE POWER STATION IN WEST MOUNTAIN CANYON AREA—TAKING CHANGHEBA HYDROPOWER STATION AS AN EXAMPLE. JOURNAL OF ENGINEERING GEOLOGY, 28(S1): 225-229. doi: 10.13544/j.cnki.jeg.2020-332

OPTIMIZATION TREATMENT OF INTAKE SLOPE AND TOWER FOUNDATION OF TUNNEL SPILLWAY FOR EXTRA-LARGE POWER STATION IN WEST MOUNTAIN CANYON AREA—TAKING CHANGHEBA HYDROPOWER STATION AS AN EXAMPLE

doi: 10.13544/j.cnki.jeg.2020-332
  • Received Date: 2020-06-30
  • Rev Recd Date: 2020-08-03
  • The mountain is high and steep in the western mountain canyon area. Even a very steep excavation slope ratio will produce a very high slope during slope excavation, resulting in difficult treatment and long construction period. Therefore, it is necessary to excavate as little as possible, carry out strong support in time, and achieve "high cleaning up, strong support, low opening and early entry" for the entrance of the spillway tunnel. In this way, the slope height of excavation can be greatly reduced, the construction difficulty can be reduced, the construction period can be reduced, and the investment can be saved. After the intake slope of the tunnel spillway was optimized, the tower foundation moved outward and was close to the slope surface. Attention should be paid to the unloading of rock mass and the adverse effects of unfavorable combination of structural planes on the slope below the tower foundation, stability analysis and calculation should be carried out, and support treatments should be taken when necessary. This paper summarized the successful treatment experience of flood discharge tunnel intake slope optimization and tower foundation slope in Changheba hydropower project on Dadu river, which can provide experience for other similar projects.
  • loading
  • Han X J,Meng F Q. 2016. Stability analysis of intake slope of flood discharge system of Changheba hydropower station[J]. Sichuan Water Power,35(1):64-67.
    Hu J S,Liu Y B,Tang S M,et al. 2016. Engineering geological investigation and evaluation in project area of Changheba Hydropower Station[J]. Sichuan Water Power,35(1):6-10.
    Huang R Q. 2008. Geodynamical process and stability control of high rock slope development[J]. Chinese Journal of Rock Mechanics and Engineering, 27(8):1 525-1544.
    Huang R Q. 2005. Main characteristics of high rock slopes in southwestern China and their dynamic evolution[J]. Advances in Earth Science,20(3):292-297.
    Li S G,Huang D,Shi L,et al. 2018. Numerical Modeling of the evolution of slope failure using limit strain criterion and dyanmic strength reduction method[J]. Journal of Engineering Geology,26(5):1227-1236.
    Li Y,Hu L G,Wang Y,et al. 2018. Combined slope and tunnel deformation analysis for no. 1 spillway tunnel outlet of centianhe project[J]. Journal of Engineering Geology,26(4):1095-1104.
    Liu Y B,Tang S M,Wang Z Q,et al. 2018. Review of engineering geological conditions and optimal treatment of the intake slope of the spillway tunnel of Changheba hydropower station[J]. Sichuan Water Power,35(1):43-45.
    Song S W,Feng X M,Xiang B Y,et al. 2011. Research on key technologies for high and steep rock slopes of hydropower engineering in southwest China[J]. Chinese Journal of Rock Mechanics and Engineering,30(1):1-22.
    Song S W,Xiang B Y,Yang J X,et al. 2010. Stability analysis and reinforcement design of high and steep slopes with complex geology in abutment of Jinping I hydropower station[J]. Chinese Journal of Rock Mechanics and Engineering,29(3):442-458.
    Sun X,Chen G Q,Zhang G Z,et al. 2020. Microstructure fracture characteristics and dilatancy effect of rock bridge under direct shear tests[J]. Journal of Engineering Geology,28(2):246-254.
    Yang L,Deng J H,Zhen L,et al. 2017. Monitoring analysis for slope stability at the entrance of spillway tunnel of Changheba Hydropower Station[J]. China Rural Water and Hydropower,(11):129-133.
    Yang Q,Wang S G,Li C Y,et al. 2020. Internal driving force of deformation and failure of rock mass structure-unbalanced force[J]. Journal of Engineering Geology,28(2):202-210.
    Zhou C B. 2013. A prospect of researches on life-cycle safety control on high-steep rock slopes in hydropower engineering[J]. Chinese Journal of Rock Mechanics and Engineering,(6):1081-1093.
    韩雪娇,蒙富强. 2016. 长河坝水电站泄洪系统进口边坡稳定性分析研究[J]. 四川水力发电,35(1):64-67.
    胡金山,刘永波,唐世明,等. 2016. 长河坝水电站枢纽区工程地质勘察与评价[J]. 四川水力发电,35(1):6-10.
    黄润秋. 2008. 岩石高边坡发育的动力过程及其稳定性控制[J]. 岩石力学与工程学报,27(8):1525-1544.
    黄润秋. 2005. 中国西南岩石高边坡的主要特征及其演化[J]. 地球科学进展,20(3):292-297.
    李世贵,黄达,石林,等. 2018. 基于极限应变判据-动态局部强度折减的边坡破坏演化数值模拟[J]. 工程地质学报,26(5):1227-1236.
    李毅,胡兰桂,汪洋,等. 2018. 涔天河工程1号泄洪洞出口边坡与隧洞联合变形分析[J]. 工程地质学报,26(4):1095-1104.
    刘永波,唐世明,王宗琼,等. 2016. 长河坝水电站泄洪洞进口边坡地质条件复核及优化治理[J]. 四川水力发电,35(1):43-45.
    宋胜武,冯学敏,向柏宇,等. 2011. 西南水电高陡岩石边坡工程关键技术研究[J]. 岩石力学与工程学报,30(1):1-22.
    宋胜武,向柏宇,杨静熙,等. 2010. 锦屏一级水电站复杂地质条件下坝肩高陡边坡稳定性分析及其加固设计[J]. 岩石力学与工程学报,29(3):442-458.
    孙祥,陈国庆,张广泽,等. 2020. 岩桥直剪细观破坏特征与剪胀效应研究[J]. 工程地质学报,28(2):246-254.
    杨磊,邓建辉,郑路,等. 2017. 长河坝水电站泄洪洞进口边坡稳定性监测分析[J]. 中国农村水利水电,(11):129-133.
    杨强,王守光,李超毅,等. 2020. 岩体结构变形破坏的内在驱动力-不平衡力[J]. 工程地质学报,28(2):202-210.
    周创兵. 2013. 水电工程高陡边坡全生命周期安全控制研究综述[J]. 岩石力学与工程学报,(6):1081-1093.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索
    Article views (629) PDF downloads(31) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint