Volume 28 Issue S1
Oct.  2020
Turn off MathJax
Article Contents
LIU Zhangrong, YE Weimin, CUI Yujun, ZHANG Zhao, WANG Qiong, CHEN Yonggui. 2020: A REVIEW ON THE PACKING DENSITY AND HOMOGENEITY OF GRANULAR MATERIALS. JOURNAL OF ENGINEERING GEOLOGY, 28(S1): 56-63. doi: 10.13544/j.cnki.jeg.2020-354
Citation: LIU Zhangrong, YE Weimin, CUI Yujun, ZHANG Zhao, WANG Qiong, CHEN Yonggui. 2020: A REVIEW ON THE PACKING DENSITY AND HOMOGENEITY OF GRANULAR MATERIALS. JOURNAL OF ENGINEERING GEOLOGY, 28(S1): 56-63. doi: 10.13544/j.cnki.jeg.2020-354

A REVIEW ON THE PACKING DENSITY AND HOMOGENEITY OF GRANULAR MATERIALS

doi: 10.13544/j.cnki.jeg.2020-354
Funds:

This research is supported by the National Key R&D Program of China (Grant No.2019YFC1509900), the China Postdoctoral Science Foundation (Grant No.2020M671217) and the National Natural Science Foundation of China (Grant Nos.41527801, 41672271, 41807237)

  • Received Date: 2020-07-02
  • Rev Recd Date: 2020-07-29
  • Granular materials are widely used in both industrial and engineering fields, where the quality of products and projects are highly dependent on the packing density and homogeneity of the granular materials. In this paper, previous studies conducted by domestic and overseas scholars on the packing density and homogeneity of granular materials are carefully reviewed and summarized. Results in the literature indicate that the packing density are related to the particle properties(particle size, shape and surface roughness, etc.),container properties(container size, shape and surface roughness, etc.),packing techniques(drop height, vibration condition, filling intensity and sequence, etc.),particle size ratio and distribution. The packing inhomogeneity(degree of segregation) increases with the increase of particle size difference, density difference and vibration acceleration, but decreases with the increase of size range, size class amount and vibration frequency, with indistinct susceptibility to particle shape. As for bentonite pellets used in high-level radioactive waste repository, it is worth devoting to improve the scientific and efficient in-situ packing techniques.
  • loading
  • Ahmad K,Smalley I J. 1973. Observation of particle segregation in vibrated granular systems[J]. Powder Technology,8(1):69-75.
    Alizadeh M,Hassanpour A,Pasha M,et al. 2017. The effect of particle shape on predicted segregation in binary powder mixtures[J]. Powder Technology,319:313-322.
    An X Z,Chai H Y. 2016a. Packing densification of binary cylindrical particle mixtures under 3D mechanical vibrations[J]. Advanced Powder Technology,27:2489-2495.
    An X Z,Li C X,Qian Q. 2016b. Experimental study on the 3D vibrated packing densification of binary sphere mixtures[J]. Particuology,27(4):110-114.
    An X Z,Li C X,Yang R Y,et al. 2009. Experimental study of the packing of mono-sized spheres subjected to one-dimensional vibration[J]. Powder Technology,196:50-55.
    An X Z,Li C X. 2013. Experiments on densifying packing of equal spheres by two-dimensional vibration[J]. Particuology,11:689-694.
    Andreasen A H M,Andersen J. 1930. Relation between grain size and interstitial space in products of unconsolidated granules[J]. Kolloid-Zeitschrift,50:217-228.
    Aste T,Weaire D. 2008. The pursuit of perfect packing[M]. New York:Taylor & Francis Group.
    Bernal J D,Mason J. 1960. Packing of spheres:Co-ordination of randomly packed spheres[J]. Nature,188:910-911.
    Berryman J G. 1983. Random close packing of hard spheres and disks[J]. Physical Review A,27(2):1053-1061.
    Cano-Pleite E,Hernández-Jiménez F,Acosta-Iborra A,et al. 2017. Segregation of equal-sized particles of different densities in a vertically vibrated fluidized bed[J]. Powder Technology,316:101-110.
    Cho G C,Dodds J,Santamarina J C. 2006. Particle shape effects on packing density, stiffness, and strength:natural and crushed sands[J]. Journal of Geotechnical and Geoenvironmental Engineering,132(5):591-602.
    Ciamarra M P,De Vizia M D,Fierro A. 2006. Granular species segregation under vertical tapping:Effects of size, density, friction, and shaking amplitude[J]. Physical Review Letters, 96(5):058001.
    Combarros M,Feise H J,Zetzener H,et al. 2014. Segregation of particulate solids:Experiments and DEM simulations[J]. Particuology,12:25-32.
    Delaney G W,Cleary P W. 2010. The packing properties of superellipsoids[J]. Europhysics Letters, 89(3):34002.
    Devriendt L,Gatumel C,Berthiaux H. 2013. Experimental evidence of mixture segregation by particle size distribution[J]. Particulate Science & Technology,31(6):653-657.
    Donev A,Cisse I,Sachs D,et al. 2004. Improving the density of jammed disordered packings using ellipsoids[J]. Science, 303(5660):990-993.
    Hales T C. 2005. A proof of the Kepler conjecture[J]. Annals of Mathematics,162:1065-1185.
    Jain A,Metzger M J,Glasser B J. 2013. Effect of particle size distribution on segregation in vibrated systems[J]. Powder Technology,237:543-553.
    Jiao Y,Stillinger F H,Torquato S. 2009. Optimal packings of superballs[J]. Physical Review E, 79(1):041309.
    Kwan A K H,Mora C F. 2001. Effects of various shape parameters on packing of aggregate particles[J]. Magazine of Concrete Research,53:91-100.
    Li Y B,Li S,Liu X L,et al. 2020. Effect of particle breakage on compression properties of calcareous sands with odemeter tests[J]. Journal of Engineering Geology,28(2):352-359.
    Liffman K,Muniandy K,Rhodes M,et al. 2001. A segregation mechanism in a vertically shaken bed[J]. Granular Matter,3(4):205-214.
    Liu F C,Wu M T,Wang H D. 2019. Effect of particle size ratio and mix ratio on mechanical behavior of rubber-sand mixtures[J]. Journal of Engineering Geology,27(2):376-389.
    Liu Z R,Ye W M,Cui Y J,et al. 2020. Investigation on vibration-induced segregation behaviour of crushed GMZ bentonite pellet mixtures[J]. Construction and Building Materials, 241:117949.
    Liu Z R,Ye W M,Zhang Z,et al. 2019a. Particle size ratio and distribution effects on packing behaviour of crushed GMZ bentonite pellets[J]. Powder Technology,351:92-101.
    Liu Z R,Ye W M,Zhang Z,et al. 2019b. A nonlinear particle packing model for multi-sized granular soils[J]. Construction and Building Materials,221:274-282.
    Liu Z R,Ye W M,Zhang Z,et al. 2020. A review on packing and hydro-mechanical behaviour of bentonite pellet mixtures[J]. Journal of Engineering Geology,28(2):294-305.
    Liu Z R. 2019. Investigation on the packing behaviour and thermal-hydraulic properties of GMZ bentonite pellet mixtures[D]. Shanghai:Tongji University.
    Mahmoudi Y,Cherif T A,Hazout L,et al. 2020. Packing density and overconsolidation ratio effects on the mechanical response of granular soils[J]. Geotechnical and Geological Engineering,38:723-742.
    Majid M,Walzel P. 2009. Convection and segregation in vertically vibrated granular beds[J]. Powder Technology,192:311-317.
    May L B H,Golick L A,Phillips K C,et al. 2010. Shear-driven size segregation of granular materials:Modeling and experiment[J]. Physical Review E, 81(1):051301.
    McGeary R K. 1961. Mechanical packing of spherical particles[J]. Journal of the American Ceramic Society,44(10):513-522.
    Meng L,Lu P,Li S,et al. 2012. Shape and size effects on the packing density of binary spherocylinders[J]. Powder Technology,228:284-294.
    Metzger M J,Remy B,Glasser B J. 2011. All the Brazil nuts are not on top:Vibration induced granular size segregation of binary, ternary and multi-sized mixtures[J]. Powder Technology,205(1):42-51.
    Navarrete I,Lopez M. 2017. Understanding the relationship between the segregation of concrete and coarse aggregate density and size[J]. Construction and Building Materials,149:741-748.
    Peng S Q,Xu Q,Li H J,et al. 2019. Grain size distribution analysis of landslide deposits with reliable image identification[J]. Journal of Engineering Geology,27(6):1290-1301.
    Qian Q,An X Z,Wang Y,et al. 2016. Physical study on the vibrated packing densification of mono-sized cylindrical particles[J]. Particuology,29:120-125.
    Rahman M,Shinohara K,Zhu H P,et al. 2011. Size segregation mechanism of binary particle mixture in forming a conical pile[J]. Chemical Engineering Science,66(23):6089-6098.
    Rosato A,Blackmore D L,Zhang N H,et al. 2002. A perspective on vibration-induced size segregation of granular materials[J]. Chemical Engineering Science,57(2):265-275.
    Rosato A,Strandburg K J,Prinz F,et al. 1987. Why the Brazil nuts are on top:Size segregation of particulate matter by shaking[J]. Physical Review Letters,58(10):1038-1040.
    Rousé P C,Fannin R J,Shuttle D A. 2008. Influence of roundness on the void ratio and strength of uniform sand[J]. Géotechnique,58(3):227-231.
    Rowe P N,Nienow A W. 1976. Particle mixing and segregation in gas fluidised beds. A review[J]. Powder Technology,15(2):141-147.
    Savage S B,Lun C K K. 1988. Particle size segregation in inclined chute flow of dry cohesionless granular solids[J]. Journal of Fluid Mechanics,189:311-335.
    Scott G D. 1960. Packing of spheres[J]. Nature,188:908-909.
    Shimoska A,Nousou I,Shirakawa Y,et al. 2013. Effects of particle shape and size distribution on size segregation of particles[J]. Journal of Chemical Engineering of Japan,46(3):187-195.
    Sohn H Y,Moreland C. 1968. The effect of particle size distribution on packing density[J]. Canadian Journal of Chemical Engineering,46(3):162-167.
    Suzuki M,Shinmura T,Iimura K,et al. 2008. Study of the wall effect on particle packing structure using x-ray micro computed tomography[J]. Advanced Powder Technology,19(2):183-195.
    Tang P,Puri V M. 2004. Methods for minimizing segregation:a review[J]. Particulate Science and Technology,22(4):321-337.
    Tang P,Puri V M. 2007. Segregation quantification of two-component particulate mixtures:effect of particle size, density, shape, and surface texture[J]. Particulate Science and Technology,25(6):571-588.
    Tangri H,Guo Y,Curtis J S. 2017. Packing of cylindrical particles:DEM simulations and experimental measurements[J]. Powder Technology,317:72-82.
    Wakeman R J. 1975. Packing densities of particles with lognormal size distributions[J]. Powder Technology,11(3):297-299.
    Wang J. 2019. Progress of geological disposal of high-level radioactive waste in China in the 21st Century[J]. Atomic Energy Science and Technology,53(10):2072-2081.
    Westman A E R,Hugill H R. 1930. The packing of particles[J]. Journal of the American Ceramic Society,13:767-779.
    Whyte L L,Mason B J. 1966. The six-cornered snowflake[M]. Oxford:Oxford University Press.
    Williams J C. 1976. The segregation of particulate materials:A review[J]. Powder Technology,15(2):245-251.
    Xie Z,An X,Wu Y,et al. 2017. Experimental study on the packing of cubic particles under three-dimensional vibration[J]. Powder Technology,317:13-22.
    Yang R Y,Yu A B,Choi S K,et al. 2008. Agglomeration of fine particles subjected to centripetal compaction[J]. Powder Technology,184(1):122-129.
    Yu A B,Bridgwater J,Burbidge A. 1997. On modeling of the packing of fine particles[J]. Powder Technology,92(3):185-194.
    Yu A B,Feng C L,Zou R P,et al. 2003. On the relationship between porosity and interparticle forces[J]. Powder Technology,130(1):70-76.
    Yu A B,Standish N. 1987. Porosity calculations of multi-component mixtures of spherical particles[J]. Powder Technology,52(3):233-241.
    Yu A B,Zou R P,Standish N. 1992. Packing of ternary mixtures of nonspherical particles[J]. Journal of the American Ceramic Society,75(10):2765-2772.
    Zhang Z P,Liu L F,Yuan Y D,et al. 2001. A simulation study of the effects of dynamic variables on the packing of spheres[J]. Powder Technology,116(1):23-32.
    Zhang Z,Ye W M,Liu Z R,et al. 2018. Influences of PSD curve and vibration on the packing dry density of crushed bentonite pellet mixtures[J]. Construction and Building Materials,185:246-255.
    Zhao J,Li S X,Jin W W,et al. 2012. Shape effects on the random-packing density of tetrahedral particles[J]. Physical Review E, 86(3):031307.
    Zhao S W,Zhang N,Zhou X W,et al. 2017a. Particle shape effects on fabric of granular random packing[J]. Powder Technology,310:175-186.
    Zhao B,An X Z,Wang Y,et al. 2017b. DEM dynamic simulation of tetrahedral particle packing under 3D mechanical vibration[J]. Powder Technology,317:171-180.
    Zheng G,Xu Q,Peng S Q. 2019. Mechanism analysis of the accumulation characteristics of rock avalanche[J]. Journal of Engineering Geology,27(4):842-852.
    Zhou Z Y,Zou R P,Pinson D,et al. 2011. Dynamic simulation of the packing of ellipsoidal particles[J]. Industrial & Engineering Chemistry Research,50(16):9787-9798.
    Zou R P,Gan M L,Yu A B. 2011. Prediction of the porosity of multi-component mixtures of cohesive and non-cohesive particles[J]. Chemical Engineering Science,66:4711-4721.
    Zou R P,Yu A B. 1996a. Wall effect on the packing of cylindrical particles[J]. Chemical Enoineering Science,51:1177-1180.
    Zou R P,Yu A B. 1996b. Evaluation of the packing characteristics of mono-sized non-spherical particles[J]. Powder Technology,88(1):71-79.
    李彦彬,李飒,刘小龙,等. 2020. 颗粒破碎对钙质砂压缩特性影响的试验研究[J]. 工程地质学报,28(2):352-359.
    刘方成,吴孟桃,王海东. 2019. 粒径比和配比对橡胶砂力学性能的影响研究[J]. 工程地质学报,27(2):376-389.
    刘樟荣,叶为民,张召,等. 2020. 膨润土颗粒混合物的堆积性质与水-力特性研究进展[J]. 工程地质学报,28(2):294-305.
    刘樟荣. 2019.

    高庙子膨润土颗粒混合物的堆积性质与考虑温度影响的水力特性研究[D]. 上海:同济大学.
    彭双麒,许强,李骅锦,等. 2019. 基于高精度图像识别的堆积体粒径分析[J]. 工程地质学报,27(6):1290-1301.
    王驹. 2019. 中国高放废物地质处置21世纪进展[J]. 原子能科学技术,53(10):2072-2082.
    郑光,许强,彭双麒. 2019. 滑坡-碎屑流的堆积特征及机理分[J]. 工程地质学报,27 (4):842-852.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索
    Article views (776) PDF downloads(64) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint