Volume 28 Issue S1
Oct.  2020
Turn off MathJax
Article Contents
GAO Guangyun, SI Zhipeng, LI Yongjia, GENG Jianlong. 2020: EFFECT OF SEISMIC LOAD TYPE AND RELATIVE DENSITY ON LIQUEFACTION DEFORMATION OF SATURATED SAND. JOURNAL OF ENGINEERING GEOLOGY, 28(S1): 1-8. doi: 10.13544/j.cnki.jeg.2020-377
Citation: GAO Guangyun, SI Zhipeng, LI Yongjia, GENG Jianlong. 2020: EFFECT OF SEISMIC LOAD TYPE AND RELATIVE DENSITY ON LIQUEFACTION DEFORMATION OF SATURATED SAND. JOURNAL OF ENGINEERING GEOLOGY, 28(S1): 1-8. doi: 10.13544/j.cnki.jeg.2020-377

EFFECT OF SEISMIC LOAD TYPE AND RELATIVE DENSITY ON LIQUEFACTION DEFORMATION OF SATURATED SAND

doi: 10.13544/j.cnki.jeg.2020-377
Funds:

This research is supported by the National Natural Science Foundation of China(Grant Nos. 41772288, 51978510)

  • Received Date: 2020-07-08
  • Rev Recd Date: 2020-07-27
  • This paper is based on the finite element platform Opensees. It established a one-dimensional shear beam soil column model with variable permeability coefficient and the accuracy of the model was verified by a centrifuge test results. The target is to explore the effect of seismic load type and relative density of sand on liquefaction deformation of saturated sand. Therefore, We selected the El-Centro seismic wave and Northridge seismic wave as inputting load. The simulated vertical displacement and excess pore pressure ratio of soil column under impact and vibration seismic wave were compared and analyzed when the relative density of sand was different. The results show that the vertical displacement under the vibration seismic wave is obviously larger than impact type; The increase of relative density can effectively reduce the vertical settlement of soil, and the effect is more obvious under the action of vibration seismic wave than that of impact seismic wave; The maximum pore pressure ratio of shock type seismic wave is larger than that of vibration type seismic wave, but the duration of high pore pressure is shorter and the dissipation process of pore pressure is faster; Loose sand is easier to achieve liquefaction conditions.
  • loading
  • Chen Q S,Gao G Y,He J F,et al. 2011. Effect of multidirectional earthquake loading on seismic compression of sand[J]. Chinese Journal of Geotechnical Engineering,33(7):1022-1027.
    Chen Q S,Xiong H,Gao G Y. 2014. Experimental study on properties of seismic loading and their influence on seismic compression in sands[J]. Chinese Journal of Geotechnical Engineering,36(8):1483-1489.
    Fan J,Lü C,Zhang H. 2010. Relation between time-frequency characteristic of earthquake ground motions and structural earthquake responses[J]. Engineering Mechanics,26(5):1272-1278.
    Gao G Y,Dong W K,Shi C,et al. 2016. Effects of seismic waves and properties of sand on seismic compression[J]. Journal of Engineering Geology,14 (S1):93-99.
    Gao G Y,Li Y J,Dong W K. 2018. Effect of vertical acceleration on site liquefaction in pulse ground motion[J]. Journal of Engineering Geology,26(5):1272-1278.
    Ishihara K,Yasuda S. 1973. Sand liquefaction under random earthquake loading condition[C]//Proceedings of the 5th World Conference on Earthquake Engineering. Rome:ASCE:329-338.
    Liang T. 2013. Characterizing liquefaction resistance of clayey sand by shear wave velocity[M]. Hangzhou:Zhejiang University.
    Liu J G. 2020. Influence of fines contents on soil liquefaction resistance in cyclic triaxial test[J]. Springer International Publishing,(prepublish).
    Shahir H,Mohammadi-Haji B,Ghassemi A. 2014. Employing a variable permeability model in numerical simulation of saturated sand behavior under earthquake loading[J]. Computers and Geotechnics,55(1):211-223.
    Shahir H,Pak A,Taiebat M,et al. 2012. Evaluation of variation of permeability in liquefiable soil under earthquake loading[J]. Computers and Geotechnics,40:74-88.
    Ueng T S,Wu C W,Cheng H W,et al. 2010. Settlements of saturated clean sand deposits in shaking table tests[J]. Soil Dyn Earthq Eng,30(1):50-60.
    Wang H,Gao G Y,Wang Y. 2016. Study on lateral spreading of liquefiable and inclined ground under earthquake[J]. Journal of Engineering Geology,24 (S1):85-92.
    Wang R,Zhang J,Wang G. 2014, A unified plasticity model for large post-liquefaction shear deformation of sand[J]. Computers and Geotechnics,59(3):54-66.
    Yang J,Yan X R. 2009. Factors affecting site response to multi-directional earthquake loading[J]. Engineering Geology,107(3):77-87.
    Yang Z H,Lu J C,Elgamal A. 2008. OpenSees soil models and solid-fluid fully coupled elements user's manual[D]. San Diego:Department of Structural Engineering University of California.
    Zhang Y M,Cheng Z L,W L L,et al. 2018. Experimental study on liquefaction characteristics of saturated silty soil at Yellow River delta[J]. Journal of Engineering Geology,26(2):451-458.
    Zhang Y M,Wan L L,Zhang X D,et al. 2018. Experiment on static liquefaction characteristics of saturated silt soil[J]. Journal of Engineering Geology,26(4):861-865.
    Zhou Y G,Xia P,Ling D S,et al. 2020. Liquefaction case studies of gravelly soils during the 2008 Wenchuan earthquake[J]. Engineering Geology(prepublish).
    Zou Y,Jing L P,Cui J,et al. 2015. Factor analysis based on numerical simulation of liquefiable site's seismic responses[J]. Journal of Disaster Prevention and Mitigation Engineering,35(2):242-248.
    陈青生,高广运,何俊峰,等. 2011. 多向地震荷载对砂土震陷的影响[J]. 岩土工程学报,33(7):1022-1027.
    陈青生,熊浩,高广运. 2014. 地震荷载特征及其对砂土震陷影响试验研究[J]. 岩土工程学报,36(8):1483-1489.
    樊剑,吕超,张辉. 2010. 地震波时频特征及与结构地震响应的关系[J]. 工程力学,27 (6):98-105, 126.
    高广运,董文悝,石超,等. 2016. 地震波及砂土特性对震陷的影响分析[J]. 工程地质学报,14 (S1):93-99.
    高广运,李永佳,董文悝. 2018. 脉冲地震动中竖向加速度对场地液化的影响[J]. 工程地质学报,26(5):1272-1278.
    梁甜. 2013.

    含黏粒砂土抗液化性能的剪切波速表征研究[M]. 杭州:浙江大学.
    王豪,高广运,王禹. 2016. 地震荷载作用下可液化微倾场地侧向变形研究[J]. 工程地质学报,13 (S1):85-92.
    张艳美,程志良,万丽丽,等. 2018. 黄河三角洲饱和粉质土液化性能试验研究[J]. 工程地质学报,26(2):451-458.
    张艳美,万丽丽,张旭东,等. 2018. 饱和粉土静态液化性能试验研究[J]. 工程地质学报,26(4):861-865.
    中华人民共和国国家标准编写组. 2008. 水利水电工程地质勘查规范(GB50478-2008)[S]. 北京:中国计划出版社.
    邹炎,景立平,崔杰,等. 2015. 基于可液化场地地震反应数值模拟的影响因素分析[J]. 防灾减灾工程学报,35 (2):242-248.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索
    Article views (683) PDF downloads(49) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint