Ye Wanjun, Qiang Yanhong, Jing Hongjun, et al. 2022. Free-thaw cycle experiment of loess paleosol with different water content based on nuclear magnetic resonance[J]. Joumal of Engineering Geology, 30(1): 144-153. doi: 10.13544/j.cnki.jeg.2020-466.
Citation: Ye Wanjun, Qiang Yanhong, Jing Hongjun, et al. 2022. Free-thaw cycle experiment of loess paleosol with different water content based on nuclear magnetic resonance[J]. Joumal of Engineering Geology, 30(1): 144-153. doi: 10.13544/j.cnki.jeg.2020-466.

FREEZE-THAW CYCLE EXPERIMENT OF LOESS PALEOSOL WITH DIFFERENT WATER CONTENT BASED ON NUCLEAR MAGNETIC RESONANCE

Funds: 

Shaanxi Provincial Key Research and Development Plan 2017ZDXM-SF-082

National Natural Science Foundation of China 42072319

More Information
  • Received Date: August 26, 2020
  • Revised Date: January 04, 2021
  • Available Online: March 04, 2022
  • This paper aims to clarify the microstructure characteristics and damage mechanism of paleosol with different water contents under freeze-thaw cycles. It uses the nuclear magnetic resonance scanner to test the paleosol samples with different water contents after freeze-thaw cycles. It studies the combination of freeze-thaw cycles and water content on the microstructure of the paleosol and the internal damage changes of the soil. The results show that the different water contents under freeze-thaw cycles cause different degrees of damage to the interior of the soil. The damage degree is that the soil with high water content is greater than that with low water content. As the number of freeze-thaw cycles increases,the signal amplitude of the T2 spectrum curve increases,the pore structure changes,the content of macropores and maximum pores increase,and the content of mesopores decreases. At the same time,the increase in pore volume of soils with larger water content is greater than that of soil with lower water content. These results show that the greater the water content in construction projects in seasonal frozen soil areas,the more likely the soil mass is to be destroyed. So the waterproof and drainage problems should be paid attention in the project. According to the principle of damage mechanics,the relationship between soil particle continuity and porosity is obtained. Then the relationship between effective stress and porosity is obtained. According to the results of nuclear magnetic resonance scanning,this paper establishes the relationship between porosity and the number of freeze-thaw cycles,and finally derives the expression of the relationship between the effective stress of the paleosol and the number of freeze-thaw cycles. The research results provide theoretical guidance for the construction projects of paleosol strata in seasonally frozen soil regions.
  • Cao C S, Wu S R, Pan M, et al. 2016. Mechanics characteristics of paleosol and its implication to loess landslide[J]. Hydrogeology and Engineering Geology, 43 (5): 127-131.
    Chen G Q, Wan Y, Pei B C, et al. 2020. The creep characteristics and damage model of sandstone under freeze-thaw cycles[J]. Journal of Engineering Geology, 28 (1): 19-28.
    Coates G, Xiao L Z, Prammer M. 2007. Nuclear magnetic resonance(NMR)logging principles and its application[M]. Men F Y, translation. Beijing: Petroleum Industry Press.
    Gu Q, Wang J D, Si D D, et al. 2016. Effect of freeze-thaw cycles on collapsibility of loess under different moisture contents[J]. Chinese Journal of Geotechnical Engineering, 38 (7): 1187-1192.
    Han W G, Xiao J, Cui Z D, et al. 2017. Acoustic emission characteristics of tight sandstone during failure processes with different confining pressures[J]. Journal of Engineering Geology, 25 (5): 1270-1278.
    He J J, Shi J P. 2018. Shear failure properties of sandstone with different moisture contents after cyclic freezing-thawing[J]. Chinese Journal of Rock Mechanics and Engineering, 37 (6): 1350-1358.
    Li J L, Zhou K P, Zhang Y M, et al. 2012. Experimental study of rock porous structure damage characteristics under condition of freezing-thawing cycles based on nuclear magnetic resonance technique[J]. Chinese Journal of Rock Mechanics and Engineering, 31 (6): 1208-1214.
    Liu Y J, Li Z M. 2011. Grey-relation analysis and neural networks model for relationship between physic-mechanical indices and microstructure parameters of soft soils[J]. Rock and Soil Mechanics, 32 (4): 1018-1024.
    Li X, Lu Y D, Zhang X Z, et al. 2018. Pore-fissure identification and characterization of paleosol based on X-ray computed tomography[J]. Bulletin of Soil and Water Conservation, 38 (6): 224-230.
    Li Z Q, Sun Y, Hu R L, et al. 2018. Quantitative analysis for nanopore structure characteristics of shales using NMR and NMR cryoporometry[J]. Journal of Engineering Geology, 26 (3): 758-766.
    Ni W K, Shi H Q. 2014 Influence of freezing-thawing cycles on micro-structure and shear strength of loess[J]. Journal of Glaciology and Geocryology, 36 (4): 922-927.
    Qi J L, Zhang J M, Zhu Y L. 2003. Influence of freezing-thawing on soil structure and its soil mechanics significance[J]. Chinese Journal of Rock Mechanics and Engineering, 22 (S2): 2690-2694.
    Shen W. 1995. Damage mechanics[M]. Wuhan: Huazhong University of Technology Press.
    Shen Y J, Wei X, Yang G S, et al. 2020. Freeze-thaw degradation model and experimental analysis of rock-concrete interface bond strength[J]. Chinese Journal of Rock Mechanics and Engineering, 39 (3): 480-490.
    Song Y J, Yang H M, Zhang L T, et al. 2019. CT real-time monitoring on uniaxial damage of frozen red sandstone[J]. Rock and Soil Mechanics, 40 (S1): 152-160.
    Tan L, Wei C F, Tian H H, et al. 2017. Experimental study on characteristics of pore water distribution and water-holding capacity of soil[J]. Journal of Engineering Geology, 25 (1): 73-79.
    Tao G L, Wu X K, Yang X H, et al. 2018. Pore distribution of cement-soil and its effect on permeability[J]. Journal of Engineering Geology, 26 (5): 1243-1249.
    The Professional Standards Compilation Group of People's Republic of China. 2019. Standard for soil test method(GB/T 50123-2019)[S]. Beijing: China Planning Press.
    Wang H, Wei C F, Tian H H. 2017. Micro structure of the cohesive soil using nuclear magnetic resonance technique[J]. Soil Engineering and Foundation, 31 (2): 217-221.
    Wu Y T, Ye W J, Yang G S, et al. 2019. Experimental research on micro-pore and macro-deformation characteristics of soils considering stress paths[J]. Chinese Journal of Rock Mechanics and Engineering, 38 (11): 2311-2320.
    Xu J, Wang Z Q, Ren J W, et al. 2017. Comparative experimental study on permeability of undisturbed and remolded loess under freezing-thawing condition[J]. Journal of Engineering Geology, 25 (2): 292-299.
    Yang G S, Tian J F, Ye W J. 2014. Influence of freeze-thaw cycles on Yangqu tunnel loess meso-damage evolution[J]. Journal of Xi'an University of Science and Technology, 34 (6): 635-640.
    Yang G S, You Z Y, Wu D, et al. 2019. Experimental study on the relation of undisturbed loess pore size distribution and mechanical property under freezing-thawing environment[J]. Coal Engineering, 51 (3): 107-112.
    Yang X R, Jiang A N. 2020. Experimental study on creep properties of freeze-thawed gneiss based on nuclear magnetic resonance[J]. Journal of Experimental Mechanics, 35 (3): 463-471.
    Ye W J, Li C Q, Dong X H, et al. 2018. Study on damage identification of loess microstructure and macro mechanical response under freezing and thawing conditions[J]. Journal of Glaciology and Geocryology, 40 (3): 546-555.
    Ye W J, Wei W, Zheng C, et al. 2019a. Effect of initial moisture content on mechanical properties of expansive paleosol[J]. Journal of Civil Engineering and Management, 36 (4): 28-31.
    Ye W J, Wu Y T, Yang G S, et al. 2019b. Study on microstructure and macro-mechanical properties of paleosol under dry-wet cycles[J]. Chinese Journal of Rock Mechanics and Engineering, 38 (10): 2126-2137.
    Zhao J J, Xie M L, Yu J L, et al. 2019. Experimental study on mechanical properties and damage evolution of fractured rock under freezing-thawing action[J]. Journal of Engineering Geology, 27 (6): 1199-1207.
    Zheng B N, Ding D Y, Zhang D, et al. 2019. CT scanning and PFC modeling combined 3D method for gravel-bearing slip soil[J]. Journal of Engineering Geology, 27 (3): 569-576.
    Zhou K P, Li J L, Xu Y J, et al. 2012. Experimental study of NMR characteristics in rock under freezing and thawing cycles[J]. Chinese Journal of Rock Mechanics and Engineering, 31 (4): 731-737.
    Zhu F J, Liu D W, Tao M, et al. 2018. Dynamic damage laws of sandstone under different water bearing conditions based on nuclear magnetic resonance[J]. Chinese Journal of Engineering, 40 (2): 144-151.
    曹春山, 吴树仁, 潘懋, 等. 2016. 古土壤力学特性及其对黄土滑坡的意义[J]. 水文地质工程地质, 43 (5): 127-131.
    陈国庆, 万亿, 裴本灿, 等. 2020. 冻融循环作用下砂岩蠕变特性及损伤模型研究[J]. 工程地质学报, 28 (1): 19-28. DOI: 10.13544/j.cnki.jeg.2019-363
    Coates G, 肖立志, Prammer M. 2007. 核磁共振测井原理与应用[M]. 孟繁萤, 译. 北京: 石油工业出版社.
    谷琪, 王家鼎, 司冬冬, 等. 2016. 不同含水率下黄土冻融循环对湿陷性影响探讨[J]. 岩土工程学报, 38 (7): 1187-1192.
    韩伟歌, 肖吉, 崔振东, 等. 2017. 不同围压下致密砂岩破裂过程声发射特征研究[J]. 工程地质学报, 25 (5): 1270-1278. DOI: 10.13544/j.cnki.jeg.2017.05.012
    贺晶晶, 师俊平. 2018. 冻融后不同含水状态砂岩的剪切破坏特性[J]. 岩石力学与工程学报, 37 (6): 1350-1358.
    李杰林, 周科平, 张亚民, 等. 2012. 基于核磁共振技术的岩石孔隙结构冻融损伤试验研究[J]. 岩石力学与工程学报, 31 (6): 1208-1214. DOI: 10.3969/j.issn.1000-6915.2012.06.016
    刘勇健, 李彰明. 2011. 软土物理力学性质指标与微结构参数的灰色关联-神经网络模型[J]. 岩土力学, 32 (4): 1018-1024. DOI: 10.3969/j.issn.1000-7598.2011.04.011
    李鑫, 卢玉东, 张晓周, 等. 2018. 基于X-ray CT的古土壤孔裂隙识别与表征[J]. 水土保持通报, 38 (6): 224-230.
    李志清, 孙洋, 胡瑞林, 等. 2018. 基于核磁共振法的页岩纳米孔隙结构特征研究[J]. 工程地质学报, 26 (3): 758-766. DOI: 10.13544/j.cnki.jeg.2017-126
    倪万魁, 师华强. 2014. 冻融循环作用对黄土微结构和强度的影响[J]. 冰川冻土, 36 (4): 922-927. DOI: 10.7522/j.issn.1000-0240.2014.0111
    齐吉琳, 张建明, 朱元林. 2003. 冻融作用对土结构性影响的土力学意义[J]. 岩石力学与工程学报, 22(增2): 2690-2694.
    沈为. 1995. 损伤力学[M]. 武汉: 华中理工大学出版社.
    申艳军, 魏欣, 杨更社, 等. 2020. 岩石-混凝土界面黏结强度冻融劣化模型及试验分析[J]. 岩石力学与工程学报, 39 (3): 480-490.
    宋勇军, 杨慧敏, 张磊涛, 等. 2019. 冻结红砂岩单轴损伤破坏CT实时试验研究[J]. 岩土力学, 40(增1): 152-160.
    谭龙, 韦昌富, 田慧会, 等. 2017. 土体持水特性及孔隙水分布特性的试验研究[J]. 工程地质学报, 25 (1): 73-79. DOI: 10.13544/j.cnki.jeg.2017.01.010
    陶高梁, 吴小康, 杨秀华, 等. 2018. 水泥土的孔隙分布及其对渗透性的影响[J]. 工程地质学报, 26 (5): 1243-1249. DOI: 10.13544/j.cnki.jeg.2017.01.010
    王卉, 韦昌富, 田慧会. 2017. 基于核磁共振技术的黏性土微观孔隙测试研究[J]. 土工基础, 31 (2): 217-221.
    吴云涛, 叶万军, 杨更社, 等. 2019. 考虑应力路径的土体微观孔隙及宏观变形特征试验研究[J]. 岩石力学与工程学报, 38 (11): 2311-2320.
    许建, 王掌权, 任建威, 等. 2017. 原状与重塑黄土冻融过程渗透特性对比试验研究[J]. 工程地质学报, 25 (2): 292-299. DOI: 10.13544/j.cnki.jeg.2017.02.004
    杨更社, 田俊峰, 叶万军. 2014. 冻融循环对阳曲隧道黄土细观损伤演化规律影响研究[J]. 西安科技大学学报, 34 (6): 635-640.
    杨更社, 尤梓玉, 吴迪, 等. 2019. 冻融环境下原状黄土孔径分布与其力学特性关系的试验研究[J]. 煤炭工程, 51 (3): 107-112.
    杨秀荣, 姜谙男. 2020. 基于核磁共振的冻融片麻岩蠕变特性试验研究[J]. 实验力学, 35 (3): 463-471.
    叶万军, 李长清, 董西好, 等. 2018. 冻融环境下黄土微结构损伤识别与宏观力学响应规律研究[J]. 冰川冻土, 40 (3): 546-555.
    叶万军, 魏伟, 郑超, 等. 2019a. 初始含水率对膨胀性古土壤力学性能的影响[J]. 土木工程与管理学报, 36 (4): 28-31.
    叶万军, 吴云涛, 杨更社, 等. 2019b. 干湿循环作用下古土壤细微观结构及宏观力学性能变化规律研究[J]. 岩石力学与工程学报, 38 (10): 2126-2137.
    赵建军, 解明礼, 余建乐, 等. 2019. 冻融作用下含裂隙岩石力学特性及损伤演化规律试验研究[J]. 工程地质学报, 27 (6): 1199-1207. DOI: 10.13544/j.cnki.jeg.2019-115
    郑博宁, 丁大勇, 张丹, 等. 2019. 含砾滑带土三维颗粒流模型建模方法研究[J]. 工程地质学报, 27 (3): 569-576. DOI: 10.13544/j.cnki.jeg.2017-211
    中华人民共和国国家标准编写组. 2019. 土工试验方法标准(GB/T 50123-2019)[S]. 北京: 中国计划出版社.
    周科平, 李杰林, 许玉娟, 等. 2012. 冻融循环条件下岩石核磁共振特性的试验研究[J]. 岩石力学与工程学报, 31 (4): 731-737. DOI: 10.3969/j.issn.1000-6915.2012.04.012
    褚夫蛟, 刘敦文, 陶明, 等. 2018. 基于核磁共振的不同含水状态砂岩动态损伤规律[J]. 工程科学学报, 40 (2): 144-151.

Catalog

    Article views (510) PDF downloads (73) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return