Citation: | Ye Wanjun, Qiang Yanhong, Jing Hongjun, et al. 2022. Free-thaw cycle experiment of loess paleosol with different water content based on nuclear magnetic resonance[J]. Joumal of Engineering Geology, 30(1): 144-153. doi: 10.13544/j.cnki.jeg.2020-466. |
Chen G Q, Wan Y, Pei B C, et al. 2020. The creep characteristics and damage model of sandstone under freeze-thaw cycles[J]. Journal of Engineering Geology, 28 (1): 19-28.
|
Coates G, Xiao L Z, Prammer M. 2007. Nuclear magnetic resonance(NMR)logging principles and its application[M]. Men F Y, translation. Beijing: Petroleum Industry Press.
|
Shen W. 1995. Damage mechanics[M]. Wuhan: Huazhong University of Technology Press.
|
Song Y J, Yang H M, Zhang L T, et al. 2019. CT real-time monitoring on uniaxial damage of frozen red sandstone[J]. Rock and Soil Mechanics, 40 (S1): 152-160.
|
The Professional Standards Compilation Group of People's Republic of China. 2019. Standard for soil test method(GB/T 50123-2019)[S]. Beijing: China Planning Press.
|
Wu Y T, Ye W J, Yang G S, et al. 2019. Experimental research on micro-pore and macro-deformation characteristics of soils considering stress paths[J]. Chinese Journal of Rock Mechanics and Engineering, 38 (11): 2311-2320.
|
Yang X R, Jiang A N. 2020. Experimental study on creep properties of freeze-thawed gneiss based on nuclear magnetic resonance[J]. Journal of Experimental Mechanics, 35 (3): 463-471.
|
Ye W J, Wei W, Zheng C, et al. 2019a. Effect of initial moisture content on mechanical properties of expansive paleosol[J]. Journal of Civil Engineering and Management, 36 (4): 28-31.
|
Ye W J, Wu Y T, Yang G S, et al. 2019b. Study on microstructure and macro-mechanical properties of paleosol under dry-wet cycles[J]. Chinese Journal of Rock Mechanics and Engineering, 38 (10): 2126-2137.
|
Zhou K P, Li J L, Xu Y J, et al. 2012. Experimental study of NMR characteristics in rock under freezing and thawing cycles[J]. Chinese Journal of Rock Mechanics and Engineering, 31 (4): 731-737.
|
陈国庆, 万亿, 裴本灿, 等. 2020. 冻融循环作用下砂岩蠕变特性及损伤模型研究[J]. 工程地质学报, 28 (1): 19-28. DOI: 10.13544/j.cnki.jeg.2019-363
|
Coates G, 肖立志, Prammer M. 2007. 核磁共振测井原理与应用[M]. 孟繁萤, 译. 北京: 石油工业出版社.
|
韩伟歌, 肖吉, 崔振东, 等. 2017. 不同围压下致密砂岩破裂过程声发射特征研究[J]. 工程地质学报, 25 (5): 1270-1278. DOI: 10.13544/j.cnki.jeg.2017.05.012
|
李杰林, 周科平, 张亚民, 等. 2012. 基于核磁共振技术的岩石孔隙结构冻融损伤试验研究[J]. 岩石力学与工程学报, 31 (6): 1208-1214. DOI: 10.3969/j.issn.1000-6915.2012.06.016
|
刘勇健, 李彰明. 2011. 软土物理力学性质指标与微结构参数的灰色关联-神经网络模型[J]. 岩土力学, 32 (4): 1018-1024. DOI: 10.3969/j.issn.1000-7598.2011.04.011
|
李志清, 孙洋, 胡瑞林, 等. 2018. 基于核磁共振法的页岩纳米孔隙结构特征研究[J]. 工程地质学报, 26 (3): 758-766. DOI: 10.13544/j.cnki.jeg.2017-126
|
倪万魁, 师华强. 2014. 冻融循环作用对黄土微结构和强度的影响[J]. 冰川冻土, 36 (4): 922-927. DOI: 10.7522/j.issn.1000-0240.2014.0111
|
沈为. 1995. 损伤力学[M]. 武汉: 华中理工大学出版社.
|
谭龙, 韦昌富, 田慧会, 等. 2017. 土体持水特性及孔隙水分布特性的试验研究[J]. 工程地质学报, 25 (1): 73-79. DOI: 10.13544/j.cnki.jeg.2017.01.010
|
陶高梁, 吴小康, 杨秀华, 等. 2018. 水泥土的孔隙分布及其对渗透性的影响[J]. 工程地质学报, 26 (5): 1243-1249. DOI: 10.13544/j.cnki.jeg.2017.01.010
|
许建, 王掌权, 任建威, 等. 2017. 原状与重塑黄土冻融过程渗透特性对比试验研究[J]. 工程地质学报, 25 (2): 292-299. DOI: 10.13544/j.cnki.jeg.2017.02.004
|
赵建军, 解明礼, 余建乐, 等. 2019. 冻融作用下含裂隙岩石力学特性及损伤演化规律试验研究[J]. 工程地质学报, 27 (6): 1199-1207. DOI: 10.13544/j.cnki.jeg.2019-115
|
郑博宁, 丁大勇, 张丹, 等. 2019. 含砾滑带土三维颗粒流模型建模方法研究[J]. 工程地质学报, 27 (3): 569-576. DOI: 10.13544/j.cnki.jeg.2017-211
|
中华人民共和国国家标准编写组. 2019. 土工试验方法标准(GB/T 50123-2019)[S]. 北京: 中国计划出版社.
|
周科平, 李杰林, 许玉娟, 等. 2012. 冻融循环条件下岩石核磁共振特性的试验研究[J]. 岩石力学与工程学报, 31 (4): 731-737. DOI: 10.3969/j.issn.1000-6915.2012.04.012
|