Volume 29 Issue 6
Dec.  2021
Turn off MathJax
Article Contents
Wu Yongjie, Wei Houzhen, Li Xiaoxiao, et al. 2021. Experimental study of acoustic emission characteristics during one-dimensional compression rebound of calcareous sand[J].Journal of Engineering Geology, 29(6): 1711-1721. doi: 10.13544/j.cnki.jeg.2020-601
Citation: Wu Yongjie, Wei Houzhen, Li Xiaoxiao, et al. 2021. Experimental study of acoustic emission characteristics during one-dimensional compression rebound of calcareous sand[J].Journal of Engineering Geology, 29(6): 1711-1721. doi: 10.13544/j.cnki.jeg.2020-601

EXPERIMENTAL STUDY OF ACOUSTIC EMISSION CHARACTERISTICS DURING ONE-DIMENSIONAL COMPRESSION REBOUND OF CALCAREOUS SAND

doi: 10.13544/j.cnki.jeg.2020-601
Funds:

the National Natural Science Foundation of China 41877260

the National Natural Science Foundation of China 41877267

the Strategic Priority Research Program of the Chinese Academy of Sciences XDA13010200

  • Received Date: 2020-11-13
  • Rev Recd Date: 2020-12-20
  • Available Online: 2022-01-06
  • Publish Date: 2021-12-25
  • This paper aims to reveal the compressive deformation,particle breakage characteristics,and acoustic emission laws of calcareous sand. The one-dimensional compression-resilience tests and synchronous acoustic emission tests were carried out on calcareous sand with different particle size fractions under three different relative densities. By sieving analysis,the relative breakage(Br) was obtained based on the particle size distribution after the test. The experimental results showed that the compressive deformation of calcareous sand is caused by the particle rearrangement and particle breakage. The particle breakage is the major factor behind this phenomenon. The rebound curve is approximately a straight line,indicating that the compressive deformation is an irreversible plastic deformation. Under the same stress,the larger the particle size,the greater the Br. The different shapes of the particles result in different interparticle filling and interlocking effects,which affects the sliding and rearrangement of the particles,and then influences the compressive deformation of the particles. The acoustic emission counts rate of the two kinds of sand increases with the increase of the particle size,and both appear mainly in the compression phase between 800 kPa and 3200 kPa. The compressive deformation and breakage characteristics of calcareous sand are consistent with their acoustic emission laws. The relation curves between counts rate and time are in good agreement with the stress-time curves. The mechanical characteristics of the calcareous sand can be reflected based on the counts rate-time curves. For calcareous sand,a "critical void ratio" exists with the fewest acoustic emission events. In this study,its value of calcareous sand with a particle size of 1~2 mm is 1.33~1.41. When the initial void ratio of the sample deviates from this critical value,the acoustic emission activities would increase in varying degrees.
  • loading
  • Alba J L, Audibert J M. 1999. Pile design in calcareous sand and carbonaceous granular materials an historic overview[C]//Proceedings of the 2th International Conference on Engineering for Calcareous Sediments, 1 : 29-44.
    Chen H D, Wei H Z, Meng Q S, et al. 2018. The study on stress-strain-strength behavior of calcareous sand with particle breakage[J]. Journal of Engineering Geology, 26 (6): 1490-1498. http://en.cnki.com.cn/Article_en/CJFDTotal-GCDZ201806011.htm
    Chen Q Y, Sun J Z, Wang R. 2009. Triaxial experiment study of acoustic emission laws of calcareous sand[J]. Rock and Soil Mechanics, 30 (7): 2027-2030, 2036. http://en.cnki.com.cn/Article_en/CJFDTOTAL-YTLX200907031.htm
    Coop M R. 1990. The mechanics of uncemented carbonate sands[J]. Géotechnique, 40 (4): 607-626. doi: 10.1680/geot.1990.40.4.607
    Hardin B O. 1985. Crushing of soil particles[J]. Journal of Geotechnical Engineering, 111 (10): 1177-1192. doi: 10.1061/(ASCE)0733-9410(1985)111:10(1177)
    Koerner R M, Lord A E, et al. 1976. Acoustic emissions behavior of granular soil[J]. Journal of Geotechnical Engineering Division, ASCE, 102 (7): 761-773. doi: 10.1061/AJGEB6.0000297
    Koerner R M, Lord A E, et al. 1984. Determination of prestress in granular soils using AE[J]. Journal of Geotechnical Engineering Division, 110 (3): 346-358. doi: 10.1061/(ASCE)0733-9410(1984)110:3(346)
    Lee K L, Farhoomand I. 1967. Compressibility and crushing of granular soil in anisotropic triaxial compression[J]. Canadian Geotechnical Journal, 4 (1): 68-86. doi: 10.1139/t67-012
    Li Y B, Li S, Liu X L, et al. 2020. Effect of particle breakage on compression properties of calcareous sands with oedometer tests[J]. Journal of Engineering Geology, 28 (2): 352-359.
    Ma L J, Li Z, Luo Z M, et al. 2019. Experimental study of strain rate effects on mechanical properties of coral particles[J]. Rock and Soil Mechanics, 40 (12): 4637-4643.
    Miura N, Sukeo O. 1979. Particle crushing of a decomposed granite soil under shear stresses[J]. Soil and Foundation, JSSMFE, 19 (3): 1-14. doi: 10.3208/sandf1972.19.3_1
    Pestana J M, Whittle A J. 2015. Compression model for cohesionless soils[J]. Géotechnique, 45 (4): 611-631. http://www.onacademic.com/detail/journal_1000035877590110_c0cf.html
    Shen J H, Wang R. 2010. Study on engineering properties of calcareous sand[J]. Journal of Engineering Geology, 18 (S1): 26-32. http://www.gcdz.org/EN/abstract/abstract10112.shtml
    Sun J Z, Wang R. 2003. Study on particle failure process of calcareous sand under triaxial compression[J]. Rock and Soil Mechanics, 24 (5): 822-825. http://www.cqvip.com/qk/94841x/200306/8744237.html
    Tan F Y. 2007. The AE test study of calcareous sand[D]. Wuhan: Wuhan Institute of Rock and Soil Mechanics, Chinese Academy of Sciences.
    The National Standards Compilation Group of People's Republic of China. 1999. Standard for soil test method(GB/T 50123-1999)[S]. Beijing: China Planning Press.
    Wang G J, Yang C H, Zhang C, et al. 2009. Experimental research on particle breakage and strength characteristics of rock and soil materials with different coarse-grain contents[J]. Rock and Soil Mechanics, 30 (12): 3649-3654. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ytlx200912015
    Wang R, Wu W J. 2019. Exploration and research on engineering geology properties of coral-reefs—Engaged in coral reef research for 30 years[J]. Journal of Engineering Geology, 27 (1): 202-207. http://en.cnki.com.cn/Article_en/CJFDTotal-GCDZ201901022.htm
    Wang X Z, Jiao Y Y, Wang R, et al. 2011. Engineering characteristics of the calcareous sand in Nansha Islands, South China Sea[J]. Engineering Geology, 120(1-4): 40-47. doi: 10.1016/j.enggeo.2011.03.011
    Wang X Z, Wang R, Meng Q S, et al. 2009. Study of plate load test of calcareous sand[J]. Rock and Soil Mechanics, 30 (1): 147-151, 156. http://en.cnki.com.cn/Article_en/CJFDTOTAL-YTLX200901035.htm
    Wang Y S, Ma L J, Li Z, et al. 2018. Investigation on the deformation mechanism of calcareous sand[J]. Protective Engineering, 40 (4): 31-35. http://en.cnki.com.cn/Article_en/CJFDTotal-FHGC201804007.htm
    Wei H Z, Zhao T, He J Q, et al. 2018. Evolution of particle breakage for calcareous sands during ring shear tests[J]. International Journal of Geomechanics, 18(2): 04017153. doi: 10.1061/(ASCE)GM.1943-5622.0001073
    Wei H Z, Zhao T, Meng Q S, et al. 2020. Quantifying the morphology of calcareous sands by dynamic image analysis[J]. International Journal of Geomechanics, 20(4): 04020020. doi: 10.1061/(ASCE)GM.1943-5622.0001640
    Yang C, Wang K, Qiao L P, et al. 2019. Acoustic emission test of calcareous sands under undrained condition[J]. Coal Geology & Exploration, 47 (1): 144-148. http://en.cnki.com.cn/Article_en/CJFDTotal-MDKT201901022.htm
    Zhang B S, Gu K, Li J W, et al. 2020. Study on crushing process and microscopic mechanism of calcareous sand[J]. Journal of Engineering Geology, 28 (4): 725-733.
    Zhang B, Chai S X, Wei H Z, et al. 2020. Influence of coral sand particle shape on the compression property of coarse grained calcareous soil[J]. Journal of Engineering Geology, 28 (1): 85-93.
    Zhang J M, Wang R, Shi X F, et al. 2005. Compression and crushing behavior of calcareous sand under confined compression[J]. Chinese Journal of Rock Mechanics and Engineering, 24 (18): 3327-3331. http://www.cnki.com.cn/Article/CJFDTotal-YSLX200518021.htm
    陈火东, 魏厚振, 孟庆山, 等. 2018. 颗粒破碎对钙质砂的应力-应变强度影响研究[J]. 工程地质学报, 26 (6): 1490-1498. doi: 10.13544/j.cnki.jeg.2017-519
    陈清运, 孙吉主, 汪稔. 2009. 钙质砂声发射特征的三轴试验研究[J]. 岩土力学, 30 (7): 2027-2030, 2036. doi: 10.3969/j.issn.1000-7598.2009.07.026
    李彦彬, 李飒, 刘小龙, 等. 2020. 颗粒破碎对钙质砂压缩特性影响的试验研究[J]. 工程地质学报, 28 (2): 352-359. doi: 10.13544/j.cnki.jeg.2019-283
    马林建, 李增, 罗棕木, 等. 2019. 珊瑚颗粒力学特性应变率效应试验研究[J]. 岩土力学, 40 (12): 4637-4643. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201912010.htm
    沈建华, 汪稔. 2010. 钙质砂的工程性质研究进展与展望[J]. 工程地质学报, 18 (S1): 26-32. http://www.gcdz.org/article/id/10112
    孙吉主, 汪稔. 2003. 三轴压缩条件下钙质砂的颗粒破裂过程研究[J]. 岩土力学, 24 (5): 822-825. doi: 10.3969/j.issn.1000-7598.2003.05.028
    谭峰屹. 2007. 钙质砂声发射试验研究[D]. 武汉: 中国科学院武汉岩土力学研究所.
    汪稔, 吴文娟. 2019. 珊瑚礁岩土工程地质的探索与研究——从事珊瑚礁研究30年[J]. 工程地质学报, 27 (1): 202-207. doi: 10.13544/j.cnki.jeg.2019-008
    王光进, 杨春和, 张超, 等. 2009. 粗粒含量对散体岩土颗粒破碎及强度特性试验研究[J]. 岩土力学, 30 (12): 3649-3654. doi: 10.3969/j.issn.1000-7598.2009.12.015
    王新志, 汪稔, 孟庆山, 等. 2009. 钙质砂室内载荷试验研究[J]. 岩土力学, 30 (1): 147-151, 156. doi: 10.3969/j.issn.1000-7598.2009.01.025
    王亚松, 马林建, 李增, 等. 2018. 钙质砂强度与变形机制研究[J]. 防护工程, 40 (4): 31-35. https://www.cnki.com.cn/Article/CJFDTOTAL-FHGC201804007.htm
    杨超, 王凯, 乔丽平, 等. 2019. 不排水条件下钙质砂声发射试验研究[J]. 煤田地质与勘探, 47 (1): 144-148. doi: 10.3969/j.issn.1001-1986.2019.01.022
    张斌, 柴寿喜, 魏厚振, 等. 2020. 珊瑚颗粒形状对钙质粗粒土的压缩性能影响[J]. 工程地质学报, 28 (1): 85-93. doi: 10.13544/j.cnki.jeg.2019-016
    张丙树, 顾凯, 李金文, 等. 2020. 钙质砂破碎过程及其微观机制试验研究[J]. 工程地质学报, 28 (4): 725-733. doi: 10.13544/j.cnki.jeg.2019-312
    张家铭, 汪稔, 石祥锋, 等. 2005. 侧限条件下钙质砂压缩和破碎特性试验研究[J]. 岩石力学与工程学报, 24 (18): 3327-3331. doi: 10.3321/j.issn:1000-6915.2005.18.022
    中华人民共和国国家标准编写组. 1999. 土工试验方法标准(GB/T 50123-1999)[S]. 北京: 中国计划出版社.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(15)  / Tables(1)

    Article views (150) PDF downloads(17) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint