Volume 29 Issue 6
Dec.  2021
Turn off MathJax
Article Contents
Song Yupeng, Song Binghui, Sun Yonghu, et al. 2021. Application of seabed cone penetration test in calculation of bearing capacity of pile foundlaion ofoffshore platform[J]. Jourmal of Engineering Geology, 29(6): 1942-1948. doi: 10.13544/j.cnki.jeg.2021-0004
Citation: Song Yupeng, Song Binghui, Sun Yonghu, et al. 2021. Application of seabed cone penetration test in calculation of bearing capacity of pile foundlaion ofoffshore platform[J]. Jourmal of Engineering Geology, 29(6): 1942-1948. doi: 10.13544/j.cnki.jeg.2021-0004

APPLICATION OF SEABED CONE PENETRATION TEST IN CALCULATION OF BEARING CAPACITY OF PILE FOUNDATION OF OFFSHORE PLAT ̄FORM

doi: 10.13544/j.cnki.jeg.2021-0004
Funds:

the National Natural Science Foundation of China 42007274

the National Natural Science Foundation of China 41806079

the National Natural Science Foundation of China 41876066

Natural Science Foundation of Shandong ZR2017QD004

  • Received Date: 2021-01-08
  • Rev Recd Date: 2021-03-24
  • Available Online: 2022-01-06
  • Publish Date: 2021-12-25
  • Cone penetration detection has the advantages of in-situ, continuity, high efficiency and resolution. The use of marine cone penetration detection results to estimate the bearing capacity of offshore platform pile foundation has a great application potential. This paper takes the pile foundation of a platform in the Chengdao sea area of Shengli Oilfield as an example. The ROSON100 marine cone penetration device was used to conduct in-situ detection around the platform's legs. Simultaneous drilling sampling and indoor geotechnical parameters testing were implemented. The results of cone penetration detection and geotechnical tests were used to estimate the bearing capacity of platform pile foundation, respectively. The similarities and differences between three different calculation methods of bearing capacity of pile foundation were discussed. The results show that the overall trend of the pile side friction resistance obtained by these three methods is basically the same with the buried depth. Based on certain regional engineering experience, the pile tip resistance and single pile ultimate bearing capacity obtained by the drilling specification method and the CPT indirect method are basically consistent. The pile tip resistance and the ultimate bearing capacity of single pile obtained by the CPT direct method are obviously larger than the former two. The ultimate bearing capacity of pile foundation shows good compatibility for these three calculation methods under the premise of considering silty sand as the bearing layer. The findings can provide a new reference for the calculation of the bearing capacity of offshore engineering pile foundation.
  • loading
  • An Y N, Yan X C, Yang K, et al. 2013. Some misconceptions in pile insertion analysis of offshore platforms in Shengli Chengdao Oilfield[J]. Journal of Waterway and Harbor, 34 (6): 537-541. http://www.onacademic.com/detail/journal_1000038061457410_0733.html
    Bustamante M, Gianeselli L. 1982. Pile bearing capacity predictions by means of static penetrometer CPT[C]//Proceedings of the 2nd European Symposium on Penetration Testing: 493-500.
    Cai G J, Liu S Y, Tong L Y, et al. 2009. Soil classification using CPTU data based upon cluster analysis theory[J]. Chinese Journal of Geotechnical Engineering, 31 (3): 416-424. http://www.cnki.com.cn/Article/CJFDTotal-YTGC200903025.htm
    Chu L P, Sun Y F, Song Y P, et al. 2017. Application of seabed cone penetration test in research on the seafloor geotechnical engineering characteristics in the Yellow River estuary[J]. Coastal Engineering, 36 (1): 22-33. http://en.cnki.com.cn/Article_en/CJFDTOTAL-HAGC201701003.htm
    Dennis N D, Olson R E. 1983. Axial capacity of steel pipe piles in clay[C]//Proceedings of Conference on Geotechnical Practice in Offshore Engineering. Austin, Texas: ASCE: 370-388.
    Geng G Q. 2016. Research on penetration mechanism of Piezocone Penetration Tset(CPTU) and its application on pile foundation engineering[D]. Nanjing: Southeast University.
    Guo S Z, Liu R. 2015. Application of cone penetration test in offshore engineering[J]. Chinese Journal of Geotechnical Engineering, 37 (S1): 207-211. http://en.cnki.com.cn/Article_en/CJFDTOTAL-YTGC2015S1040.htm
    Han M, Li G, Ye J C, et al. 2020. Discussion of CPT derived undrained shear strength of cohesive soil in Chengdao Oilfield[J]. Soil Engineering and Foundation, 34 (4): 520-524.
    Hu Y, Wang Y. 2020. Identification of subsurface soil stratification using cone penetration tests and Bayesian learning[J]. Journal of Engineering Geology, 28 (5): 966-972.
    Jia Z L, Yan S W, Yang A W, et al. 2016. Application of cone penetration test for the analysis of pile-run of long and large diameter piles in offshore geotechnical engineering[J]. Chinese Journal of Rock Mechanics and Engineering, 35 (S1): 3274-3282. http://en.cnki.com.cn/Article_en/CJFDTotal-YSLX2016S1077.htm
    Kuiter J D, Beringen F L. 1979. Pile foundations for large North Sea structures[J]. Marine Geotechnology, 3 (3): 267-314. doi: 10.1080/10641197909379805
    Li D Z, Tong S X. 1982. Discussion on reasonable depth of pile tip penetration into bearing stratum[J]. Architecture Technology, (6): 28-31.
    Li S D, Sun Y M, Chen W C, et al. 2019. Analyses of gas production methods and offshore production tests of natural gas hydrates[J]. Journal of Engineering Geology, 27 (1): 55-68. http://en.cnki.com.cn/Article_en/CJFDTotal-GCDZ201901007.htm
    Liu S Y, Cai G J, Zou H F. 2013. Practical soil classification methods in China based on piezocone penetration tests[J]. Chinese Journal of Geotechnical Engineering, 35 (10): 1765-1776. http://www.cnki.com.cn/Article/CJFDTotal-YTGC201310002.htm
    Randolph M F, Dolwin J B. 1994. Design of driven piles in sand[J]. Gotechnique, 44 (3): 427-448. doi: 10.1680/geot.1994.44.3.427
    Randolph M F. 2003. Science and empiricism in pile foundation design[J]. Gotechnique, 53 (10): 847-875. doi: 10.1680/geot.2003.53.10.847
    The Professional Standards Compilation Group of People′s Republic of China. 2017. Technical specification for piezocone penetration testing(T/CCES 1-2017)[S]. Beijing: China Architecture and Building Press.
    The National Standards Compilation Group of People′s Republic of China. 2009. Specifications for offshore platform engineering geology investigation(GB/T 17503-2009)[S]. Beijing: China Architecture and Building Press.
    Zhu J F. 2011. Study on properties of soil considering disturbance[D]. Hangzhou: Zhejiang University.
    Zou H F. 2018. Research on spatial variability and uncertainties within pile capacity of soft soils based on CPTU[D]. Nanjing: Southeast University.
    安永宁, 阎锡臣, 杨鲲, 等. 2013. 胜利埕岛油田海上作业平台插桩分析中的几点误区思考[J]. 水道港口, 34 (6): 537-541. doi: 10.3969/j.issn.1005-8443.2013.06.013
    蔡国军, 刘松玉, 童立元, 等. 2009. 基于聚类分析理论的CPTU土分类方法研究[J]. 岩土工程学报, 31 (3): 416-424. doi: 10.3321/j.issn:1000-4548.2009.03.018
    楚立鹏, 孙永福, 宋玉鹏, 等. 2017. 海床式静力触探在黄河口海底土工程特性研究中的应用[J]. 海岸工程, 36 (1): 22-33. https://www.cnki.com.cn/Article/CJFDTOTAL-HAGC201701003.htm
    耿功巧. 2016. 孔压静力触探贯入机理及其桩基工程应用研究[D]. 南京: 东南大学.
    郭绍曾, 刘润. 2015. 静力触探测试技术在海洋工程中的应用[J]. 岩土工程学报, 37 (S1): 207-211. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC2015S1040.htm
    韩猛, 李国, 叶纪超, 等. 2020. 基于CPT确定埕岛油田黏性土不排水抗剪强度方法的探讨[J]. 土工基础, 34 (4): 520-524. https://www.cnki.com.cn/Article/CJFDTOTAL-TGJC202004030.htm
    胡越, 王宇. 2020. 静力触探识别场地土层分布的贝叶斯学习方法研究[J]. 工程地质学报, 28 (5): 966-972. doi: 10.13544/j.cnki.jeg.2020-263
    贾沼霖, 闫澍旺, 杨爱武, 等. 2016. 静力触探在大直径超长桩溜桩分析中的应用[J]. 岩石力学与工程学报, 35 (S1): 3274-3282. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2016S1077.htm
    李大展, 佟世祥. 1982. 关于桩尖贯入持力层合理深度问题的探讨[J]. 建筑技术, (6): 28-31. https://www.cnki.com.cn/Article/CJFDTOTAL-JZJI198206005.htm
    李守定, 孙一鸣, 陈卫昌, 等. 2019. 天然气水合物开采方法及海域试采分析[J]. 工程地质学报, 27 (1): 55-68. doi: 10.13544/j.cnki.jeg.2019-065
    刘松玉, 蔡国军, 邹海峰. 2013. 基于CPTU的中国实用土分类方法研究[J]. 岩土工程学报, 35 (10): 1765-1776. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201310002.htm
    中华人民共和国国家标准编写组. 2009. 海上平台场址工程地质勘察规范(GB/T 17503-2009)[S]. 北京: 中国建筑工业出版社.
    中华人民共和国行业标准编写组. 2017. 孔压静力触探测试技术规程(T/CCES 1-2017)[S]. 北京: 中国建筑工业出版社.
    朱剑锋. 2011. 考虑扰动影响的土体性状研究[D]. 杭州: 浙江大学.
    邹海峰. 2018. 基于CPTU的软弱土空间变异性特征与桩基承载力不确定性设计方法研究[D]. 南京: 东南大学.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(5)  / Tables(5)

    Article views (139) PDF downloads(30) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint