Volume 29 Issue 6
Dec.  2021
Turn off MathJax
Article Contents
Tian Chaoyang, Lan Hengxing, Liu Xin. 2021. Study on compression and crushing mechanical properties of calcareous sand considering influence of morphology and grading[J].Journal of Engineering Geology, 29(6): 1700-1710. doi: 10.13544/j.cnki.jeg.2021-0006
Citation: Tian Chaoyang, Lan Hengxing, Liu Xin. 2021. Study on compression and crushing mechanical properties of calcareous sand considering influence of morphology and grading[J].Journal of Engineering Geology, 29(6): 1700-1710. doi: 10.13544/j.cnki.jeg.2021-0006

STUDY ON COMPRESSION AND CRUSHING MECHANICAL PROPERTIES OF CALCAREOUS SAND CONSIDERING INFLUENCE OF MORPHOLOGY AND GRADING

doi: 10.13544/j.cnki.jeg.2021-0006
Funds:

Key Pioneering Project of Chinese Academy of Sciences QYZDY-SSW-DQC019

the National Natural Science Foundation of China 41525010

the National Natural Science Foundation of China 41927806

the National Natural Science Foundation of China 41790443

  • Received Date: 2021-01-09
  • Rev Recd Date: 2021-03-31
  • Available Online: 2022-01-06
  • Publish Date: 2021-12-25
  • The scale of reef engineering in the South China Sea is gradually increasing. The construction of some structures with large loads can inevitably lead to the crushing of calcareous sand that can be the main material of foundation. Therefore,it is important to study the compression and the crushing mechanism of calcareous sand under high stress. In this paper,the basic geometric parameters of calcareous particles were obtained based on the microscopic image acquisition and processing technology. The shape of particles was quantitatively characterized by two shape parameters of sphericity(S) and convexity(C). A series of confined compression tests,based on a high-pressure oedometer instrument with a termination pressure of 16 MPa,was carried out to investigate the compression and breakage characteristics of calcareous sand in high stress. The effect of particle size,particle distribution,and particle shape on the compressive and crushing properties of calcareous sand were also discussed respectively. The result showed that with the increase of average particle size,the shape of calcareous sands was more irregular,and the corners were also developed. With the increase of stress,the compression curves of calcareous sand with different particle sizes tend to converge on a straight line. The influence of initial particle size on the compression characteristics of the samples decreased and disappeared eventually. Meanwhile,for calcareous sand of different grades,the compression curve also converged but did not intersect in a straight line. The compression characteristics of samples were still influenced by the initial grades. It's worth noting that when the non-uniformity coefficient(Cu) wass close,the compression and a crushing amount of calcareous sand gradually increased with the increase of average particle size(d50). However,when d50 was close,its compression and crushing amount gradually decreased with the increase of Cu.
  • loading
  • Altuhafi F N,Coop M R,Georgiannou V N. 2016. Effect of particle shape on the mechanical behavior of natural sands[J]. Journal of Geotechnical and Geoenvironmental Engineering, 142(12): 04016071. doi: 10.1061/(ASCE)GT.1943-5606.0001569
    Altuhafi F N, Coop M R. 2011. Changes to particle characteristics associated with the compression of sands[J]. Géotechnique, 61 (6): 459-471. doi: 10.1680/geot.9.P.114
    Alvarez-Borges F, Clayton C R I, Richards D, et al. 2018. The effect of the remolded void ratio on unit shaft friction in small displacement piles in chalk[C]//Engineering in Chalk: Proceedings of the Chalk 2018 Conference: 475-480.
    Cai Z Y, Hou H Y, Zhang J X, et al. 2019. Experimental study on the influence of density and stress level on particle breakage of coral sand[J]. Journal of Hydraulic Engineering, 50 (2): 184-192.
    Carrera A, Coop M, Lancellotta R. 2011. Influence of grading on the mechanical behaviour of Stava tailings[J]. Géotechnique, 61 (11): 935-946. doi: 10.1680/geot.9.P.009
    Cavarretta I, O'Sullivan C, Coop M R. 2017. The relevance of roundness to the crushing strength of granular materials[J]. Géotechnique, 67 (4): 301-312. doi: 10.1680/jgeot.15.P.226
    Chen H D, Wei H Z, Meng Q S, et al. 2018. The study on stress-strain-strength behavior of calcareous sand with particle breakage[J]. Journal of Engineering Geology, 26 (6): 1490-1498. http://en.cnki.com.cn/Article_en/CJFDTotal-GCDZ201806011.htm
    Cho G C, Dodds J, Santamarina C. 2006. Particle shape effects on packing density, stiffness, and strength: natural and crushed sands[J]. Journal of Geotechnical and Geoenvironmental Engineering, 133 (5): 291-602. http://materias.fi.uba.ar/6408/santamarina2.pdf
    Hardin B O. 1985. Crushing of soil particles[J]. Journal of Geotechnical Engineering, 111 (10): 177-1192. http://www.nrcresearchpress.com/servlet/linkout?suffix=refg17/ref17&dbid=16&doi=10.1139%2Ft2012-007&key=10.1061%2F(ASCE)0733-9410(1985)111%3A10(1177)
    Ji W D, Zhang Y T, Pei W B, et al. 2018. Influence of loading method and stress level on the particle crushing of coral calcareous sand[J]. Chinese Journal of Rock Mechanics and Engineering, 37 (8): 1953-1961. http://www.researchgate.net/publication/328800645_Influence_of_loading_method_and_stress_level_on_the_particle_crushing_of_coral_calcareous_sand
    Jiang M J, Wu D, Cao P, et al. 2017. Connected inner pore analysis of calcareous sands using SEM[J]. Chinese Journal of Geotechnical Engineering, 39 (S1): 1-5. http://www.researchgate.net/publication/328075750_Connected_inner_pore_analysis_of_calcareous_sands_using_SEM
    Kuang D M, Long Z L, Guo R Q, et al. 2020. Experimental and numerical investigation on size effect on crushing behaviors of single calcareous sand particles[J]. Marine Georesources & Geotechnology, 39 (2): 1-11. doi: 10.1080/1064119X.2020.1725194
    Lan H X, Martin C D, Hu B. 2010. Effect of heterogeneity of brittle rock on micromechanical extensile behavior during compression loading[J]. Journal of Geophysical Research—Solid Earth, 115, B01202.
    Lan H X, Zhao X X, Wu Y M, et al. 2017. Settlement and deformation characteristics of calcareous island-reef[J]. Periodical of Ocean University of China, 47 (10): 1-8.
    Lei X D, Yang Z P, Zhai H, et al. 2020. Particle flow numerical research on factors influencing rock block breakage characteristics of soil-rock mixtures[J]. Journal of Engineering Geology, 28 (6): 1193-1204.
    Li W, Coop M R. 2019. Mechanical behaviour of Panzhihua iron tailings[J]. Canadian Geotechnical Journal, 56 (3): 420-435. doi: 10.1139/cgj-2018-0032
    Li Y B, Li S, Liu X L, et al. 2020. Effect of particle breakage on compression properties of calcareous sands with oedometer tests[J]. Journal of Engineering Geology, 28 (2): 352-359. doi: 10.1007/s12205-020-0458-7
    Liu C Q, Wang R. 1998. Preliminary research on physical and mechanical properties of calcareous sand[J]. Rock and Soil Mechanics, 19 (1): 32-37, 44. http://www.cnki.com.cn/Article/CJFDTotal-YTLX199801005.htm
    Liu X, Tian C Y, Lan H X. 2020. Laboratory investigation of the mechanical properties of a rubber-calcareous sand mixture: The effect of rubber content[J]. Applied Sciences-Basel, 10(18): 6583. doi: 10.3390/app10186583
    Liu X, Yang J, Wang G H, et al. 2016. Small-strain shear modulus of volcanic granular soil: An experimental investigation[J]. Soil Dynamics and Earthquake Engineering, 86 : 15-24. doi: 10.1016/j.soildyn.2016.04.005
    Liu X, Yang J. 2018. Shear wave velocity in sand: effect of grain shape[J]. Géotechnique, 68 (8): 742-748. doi: 10.1680/jgeot.17.T.011
    Lü C W, Wu H L, Shi M L. 2019. Laboratory tests of cement stabilized & solidified coral reef and sand for use of highway pavement[J]. Journal of Engineering Geology, 27 (6): 1440-1447.
    Lü Y R, Wang M Y, Wei J Q, et al. 2018. Experimental techniques of SHPB for calcareous sand and its dynamic behaviors[J]. Explosion and Shock Waves, 38 (6): 1262-1270. http://www.researchgate.net/publication/329831559_Experimental_techniques_of_SHPB_for_calcareous_sand_and_its_dynamic_behaviors
    Ma L J, Li Z, Wang M Y, et al. 2019. Effects of size and loading rate on the mechanical properties of single coral particles[J]. Powder Technology, 342 : 961-971. doi: 10.1016/j.powtec.2018.10.037
    Ma Q F, Liu H L, Xiao Y, et al. 2018. Compression and particle breakage features of calcareous sand under high stress[J]. Journal of Disaster Prevention and Mitigation Engineering, 38 (6): 1020-1025. http://en.cnki.com.cn/Article_en/CJFDTotal-DZXK201806018.htm
    McDowell G R, Bolton M D. 1998. On the micro mechanics of crushable aggregates[J]. Géotechnique, 48 (5): 667-679. doi: 10.1680/geot.1998.48.5.667
    Morioka B, Nicholson P. 2000. Evaluation of the liquefaction potential of calcareous sand[C]//Proceedings of the International Offshore and Polar Engineering Conference: 494-500.
    Nakata Y, Hyde A F L, Hyodo M, et al. 1999. A probabilistic approach to sand particle crushing in the triaxial test[J]. Géotechnique, 49 (5): 567-583. doi: 10.1680/geot.1999.49.5.567
    Peng Y, Ding X M, Xiao Y, et al. 2019. Study of particle breakage behaviour of calcareous sand by dyeing tracking and particle image segmentation method[J]. Rock and Soil Mechanics, 40 (7): 2663-2672. http://en.cnki.com.cn/Article_en/CJFDTotal-YTLX201907020.htm
    Qin Y, Yao T, Wang R, et al. 2014. Particle breakage-based analysis of deformation law of calcareous sediments under high-pressure consolidation[J]. Rock and Soil Mechanics, 35 (11): 3123-3128. http://d.wanfangdata.com.cn/periodical/ytlx201411012
    Sharma S S, Fahey M. 2020. Deformation characteristics of two cemented calcareous soils[J]. Canadian Geotechnical Journal, 41 (6): 1139-1151. http://www.onacademic.com/detail/journal_1000037117233410_e4ba.html
    Shen J H, Wang R. 2010. Study on engineering properties of calcareous sand[J]. Journal of Engineering Geology, 18 (S1): 26-32. http://www.gcdz.org/EN/abstract/abstract10112.shtml
    Shen Y, Shen X, Yu Y M, et al. 2019. Macro-micro study of compressive deformation properties of calcareous sand with different particle fraction contents[J]. Rock and Soil Mechanics, 40 (10): 3733-3740. http://en.cnki.com.cn/Article_en/CJFDTotal-YTLX201910006.htm
    Shipton B, Coop M R. 2012. On the compression behaviour of reconstituted soils[J]. Soils Found, 52 (4): 668-681. doi: 10.1016/j.sandf.2012.07.008
    Sun J Z, Wang R. 2004. Influence of confining pressure on particle breakage and shear expansion of calcareous sand[J]. Chinese Journal of Rock Mechanics and Engineering, 23 (4): 641-644. http://www.researchgate.net/publication/296724578_Influence_of_confining_pressure_on_particle_breakage_and_shear_expansion_of_calcareous_sand
    Wang R, Wu W J. 2019. Exploration and research on engineering geological properties of coral reefs-Engaged in coral reef research for 30 years[J]. Journal of Engineering Geology, 27 (1): 202-207. http://en.cnki.com.cn/Article_en/CJFDTotal-GCDZ201901022.htm
    Wang S, Lei X W, Meng Q S, et al. 2020. Influence of particle shape on the density and compressive performance of calcareous sand[J]. KSCE Journal of Civil Engineering, 24 (1): 49-62. doi: 10.1007/s12205-020-0145-8
    Wang W, Coop M R. 2016. An investigation of breakage behaviour of single sand particles using a high-speed microscope camera[J]. Géotechnique, 66 (12): 984-998. doi: 10.1680/jgeot.15.P.247
    Wang Y Q, Hong Y, Guo Z, et al. 2018. Micro-and macro-mechanical behavior of crushable calcareous sand in South China Sea[J]. Rock and Soil Mechanics, 39 (1): 199-206, 215. http://www.researchgate.net/publication/325169482_Micro-and_macro-mechanical_behavior_of_crushable_calcareous_sand_in_South_China_Sea
    Wei H Z, Zhao T, Meng Q S, et al. 2020. Quantifying the morphology of calcareous sands by dynamic image analysis[J]. International Journal of Geomechanics, 20(4): 04020020. doi: 10.1061/(ASCE)GM.1943-5622.0001640
    Wen Z, Duan Z G, Li S D, et al. 2020. Shear mechanical properties of dredged coral sands from South China Sea, China[J]. Journal of Engineering Geology, 28 (1): 77-84.
    Wood A, Mackenzie D, Burbury M, et al. 2015. Design of large diameter monopiles in chalk at westermost rough offshore wind farm[C]//Frontiers in Offshore Geotechnics Ⅲ: Proceedings of the Third International Symposium on Frontiers in Offshore Geotechnics(ISFOG 2015): 723-728.
    Wu J P, Chu Y, Lou Z G. 1997. Influence of particle breakage on deformation and strength properties of calcareous sands[J]. Chinese Journal of Geotechnical Engineering, 19 (5): 49-55. http://trid.trb.org/view/476982
    Yang J, Liu X. 2016. Shear wave velocity and stiffness of sand: the role of non-plastic fines[J]. Géotechnique, 66 (6): 500-514. doi: 10.1680/jgeot.15.P.205
    Zeng K F, Liu H B. 2020. A modified Duncan-Chang E-B model with particle breakage for calcareous sand[J]. Journal of Engineering Geology, 28 (1): 94-102.
    Zhang B S, Gu K, Li J W, et al. 2020. Study on crushing process and microscopic mechanism of calcareous sand[J]. Journal of Engineering Geology, 28 (4): 725-733.
    Zhang B W. 2014. Particle breakage research of calcareous sand under confined compression[D]. Wuhan: Wuhan University of Technology.
    Zhang B, Chai S X, Wei H Z, et al. 2020. Influence of coral sand particle shape on the compression properties of carol grained calcareous soil[J]. Journal of Engineering Geology, 28 (1): 85-93.
    Zhang J M, Duan M D, Wang D L, et al. 2019. Particle strength of calcareous sand in nansha islands, south China sea[J]. Advances in Civil Engineering Materials, 8 (1): 355-364. http://www.researchgate.net/publication/333633500_Particle_Strength_of_Calcareous_Sand_in_Nansha_Islands_South_China_Sea
    Zhang J M, Wang R, Shi X F, et al. 2005. Compression and crushing behavior of calcareous sand under confined compression[J]. Chinese Journal of Rock Mechanics and Engineering, 24 (18): 3327-3331. http://www.cnki.com.cn/Article/CJFDTotal-YSLX200518021.htm
    Zhang J M. 2004. Study on the fundamental mechanical characteristics of calcareous sand and the influence of particle breakage[D]. Wuhan: Institute of Rock & Soil Mechanics, Chinese Academy of Sciences.
    Zhou B, Wang J, Wang H. 2018. Three-dimensional sphericity, roundness and fractal dimension of sand particles[J]. Géotechnique, 68 (1): 18-30. doi: 10.1680/jgeot.16.P.207
    蔡正银, 侯贺营, 张晋勋, 等. 2019. 密度与应力水平对珊瑚砂颗粒破碎影响试验研究[J]. 水利学报, 50 (2): 184-192. https://www.cnki.com.cn/Article/CJFDTOTAL-SLXB201902004.htm
    陈火东, 魏厚振, 孟庆山, 等. 2018. 颗粒破碎对钙质砂的应力-应变及强度影响研究[J]. 工程地质学报, 26 (6): 1490-1498. doi: 10.13544/j.cnki.jeg.2017-519
    纪文栋, 张宇亭, 裴文斌, 等. 2018. 加载方式和应力水平对珊瑚砂颗粒破碎影响的试验研究[J]. 岩石力学与工程学报, 37 (8): 1953-1961. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201808018.htm
    蒋明镜, 吴迪, 曹培, 等. 2017. 基于SEM图片的钙质砂连通孔隙分析[J]. 岩土工程学报, 39 (S1): 1-5. doi: 10.11779/CJGE2017S1001
    兰恒星, 赵晓霞, 伍宇明, 等. 2017. 钙质岛礁沉降变形过程分析[J]. 中国海洋大学学报, 47 (10): 1-8. https://www.cnki.com.cn/Article/CJFDTOTAL-QDHY201710002.htm
    雷晓丹, 杨忠平, 翟航, 等. 2020. 土石混合体块石破碎影响因素的颗粒流数值研究[J]. 工程地质学报, 28 (6): 1193-1204. doi: 10.13544/j.cnki.jeg.2020-059
    李彦斌, 李飒, 刘小龙, 等. 2020. 颗粒破碎对钙质砂压缩特性影响的试验研究[J]. 工程地质学报, 28 (2): 352-359. doi: 10.13544/j.cnki.jeg.2019-283
    刘崇权, 汪稔. 1998. 钙质砂物理力学性质初探[J]. 岩土力学, 19 (1): 32-37, 44. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX199801005.htm
    吕晨炜, 伍浩良, 石名磊. 2019. 水泥固化稳定珊瑚礁岩、砂吹填材料路用性能研究[J]. 工程地质学报, 27 (6): 1440-1447. doi: 10.13544/j.cnki.jeg.2019-096
    吕亚茹, 王明洋, 魏久淇, 等. 2018. 钙质砂的SHPB实验技术及其动态力学性能[J]. 爆炸与冲击, 38 (6): 1262-1270. https://www.cnki.com.cn/Article/CJFDTOTAL-BZCJ201806009.htm
    马启峰, 刘汉龙, 肖杨, 等. 2018. 高应力作用下钙质砂压缩及颗粒破碎特性试验研究[J]. 防灾减灾工程学报, 38 (6): 1020-1025. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXK201806018.htm
    彭宇, 丁选明, 肖杨, 等. 2019. 基于染色标定与图像颗粒分割的钙质砂颗粒破碎特性研究[J]. 岩土力学, 40 (7): 2663-2672. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201907020.htm
    秦月, 姚婷, 汪稔, 等. 2014. 基于颗粒破碎的钙质沉积物高压固结变形分析[J]. 岩土力学, 35 (11): 3123-3128. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201411014.htm
    沈建华, 汪稔. 2010. 钙质砂的工程性质研究进展与展望[J]. 工程地质学报, 18 (S1): 26-32. http://www.gcdz.org/article/id/10112
    沈杨, 沈雪, 俞演名, 等. 2019. 粒组含量对钙质砂压缩变形特性影响的宏细观研究[J]. 岩土力学, 40 (10): 3733-3740. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201910006.htm
    孙吉主, 汪稔. 2004. 钙质砂的颗粒破碎和剪胀特性的围压效应[J]. 岩石力学与工程学报, 23 (4): 641-644. doi: 10.3321/j.issn:1000-6915.2004.04.021
    汪稔, 吴文娟. 2019. 珊瑚礁岩土工程地质的探索与研究——从事珊瑚礁研究30年[J]. 工程地质学报, 27 (1): 202-207. doi: 10.13544/j.cnki.jeg.2019-008
    汪轶群, 洪义, 国振, 等. 2018. 南海钙质砂宏细观破碎力学特性[J]. 岩土力学, 39 (1): 199-206, 215. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201801025.htm
    文哲, 段志刚, 李守定, 等. 2020. 中国南海岛礁吹填珊瑚砂剪切力学特性[J]. 工程地质学报, 28 (1): 77-84. doi: 10.13544/j.cnki.jeg.2019-243
    吴京平, 褚瑶, 楼志刚, 等. 1997. 颗粒破碎对钙质砂变形及强度特性的影响[J]. 岩土工程学报, 19 (5): 49-55. doi: 10.3321/j.issn:1000-4548.1997.05.008
    曾凯峰, 刘华北. 2020. 考虑颗粒破碎的钙质砂修正邓肯-张E-B模型[J]. 工程地质学报, 28 (1): 94-102. doi: 10.13544/j.cnki.jeg.2019-218
    张弼文. 2014. 侧限条件下钙质砂的颗粒破碎特性研究[D]. 武汉: 武汉理工大学.
    张斌, 柴寿喜, 魏厚振, 等. 2020. 珊瑚颗粒形状对钙质粗粒土的压缩性能影响[J]. 工程地质学报, 28 (1): 85-93. doi: 10.13544/j.cnki.jeg.2019-016
    张丙树, 顾凯, 李金文, 等. 2020. 钙质砂破碎过程及其微观机制试验研究[J]. 工程地质学报, 28 (4): 725-733. doi: 10.13544/j.cnki.jeg.2019-312
    张家铭, 汪稔, 石祥峰, 等. 2005. 侧限条件下钙质砂压缩和破碎特性试验研究[J]. 岩石力学与工程学报, 24 (18): 3327-3331. doi: 10.3321/j.issn:1000-6915.2005.18.022
    张家铭. 2004. 钙质砂基本力学性质及颗粒破碎影响研究[D]. 武汉: 中国科学院武汉岩土力学研究所.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(11)  / Tables(4)

    Article views (219) PDF downloads(37) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint