Citation: | Tian Chaoyang, Lan Hengxing, Liu Xin. 2021. Study on compression and crushing mechanical properties of calcareous sand considering influence of morphology and grading[J].Journal of Engineering Geology, 29(6): 1700-1710. doi: 10.13544/j.cnki.jeg.2021-0006 |
Altuhafi F N,Coop M R,Georgiannou V N. 2016. Effect of particle shape on the mechanical behavior of natural sands[J]. Journal of Geotechnical and Geoenvironmental Engineering, 142(12): 04016071. doi: 10.1061/(ASCE)GT.1943-5606.0001569
|
Altuhafi F N, Coop M R. 2011. Changes to particle characteristics associated with the compression of sands[J]. Géotechnique, 61 (6): 459-471. doi: 10.1680/geot.9.P.114
|
Alvarez-Borges F, Clayton C R I, Richards D, et al. 2018. The effect of the remolded void ratio on unit shaft friction in small displacement piles in chalk[C]//Engineering in Chalk: Proceedings of the Chalk 2018 Conference: 475-480.
|
Cai Z Y, Hou H Y, Zhang J X, et al. 2019. Experimental study on the influence of density and stress level on particle breakage of coral sand[J]. Journal of Hydraulic Engineering, 50 (2): 184-192.
|
Carrera A, Coop M, Lancellotta R. 2011. Influence of grading on the mechanical behaviour of Stava tailings[J]. Géotechnique, 61 (11): 935-946. doi: 10.1680/geot.9.P.009
|
Cavarretta I, O'Sullivan C, Coop M R. 2017. The relevance of roundness to the crushing strength of granular materials[J]. Géotechnique, 67 (4): 301-312. doi: 10.1680/jgeot.15.P.226
|
Chen H D, Wei H Z, Meng Q S, et al. 2018. The study on stress-strain-strength behavior of calcareous sand with particle breakage[J]. Journal of Engineering Geology, 26 (6): 1490-1498. http://en.cnki.com.cn/Article_en/CJFDTotal-GCDZ201806011.htm
|
Cho G C, Dodds J, Santamarina C. 2006. Particle shape effects on packing density, stiffness, and strength: natural and crushed sands[J]. Journal of Geotechnical and Geoenvironmental Engineering, 133 (5): 291-602. http://materias.fi.uba.ar/6408/santamarina2.pdf
|
Hardin B O. 1985. Crushing of soil particles[J]. Journal of Geotechnical Engineering, 111 (10): 177-1192. http://www.nrcresearchpress.com/servlet/linkout?suffix=refg17/ref17&dbid=16&doi=10.1139%2Ft2012-007&key=10.1061%2F(ASCE)0733-9410(1985)111%3A10(1177)
|
Ji W D, Zhang Y T, Pei W B, et al. 2018. Influence of loading method and stress level on the particle crushing of coral calcareous sand[J]. Chinese Journal of Rock Mechanics and Engineering, 37 (8): 1953-1961. http://www.researchgate.net/publication/328800645_Influence_of_loading_method_and_stress_level_on_the_particle_crushing_of_coral_calcareous_sand
|
Jiang M J, Wu D, Cao P, et al. 2017. Connected inner pore analysis of calcareous sands using SEM[J]. Chinese Journal of Geotechnical Engineering, 39 (S1): 1-5. http://www.researchgate.net/publication/328075750_Connected_inner_pore_analysis_of_calcareous_sands_using_SEM
|
Kuang D M, Long Z L, Guo R Q, et al. 2020. Experimental and numerical investigation on size effect on crushing behaviors of single calcareous sand particles[J]. Marine Georesources & Geotechnology, 39 (2): 1-11. doi: 10.1080/1064119X.2020.1725194
|
Lan H X, Martin C D, Hu B. 2010. Effect of heterogeneity of brittle rock on micromechanical extensile behavior during compression loading[J]. Journal of Geophysical Research—Solid Earth, 115, B01202.
|
Lan H X, Zhao X X, Wu Y M, et al. 2017. Settlement and deformation characteristics of calcareous island-reef[J]. Periodical of Ocean University of China, 47 (10): 1-8.
|
Lei X D, Yang Z P, Zhai H, et al. 2020. Particle flow numerical research on factors influencing rock block breakage characteristics of soil-rock mixtures[J]. Journal of Engineering Geology, 28 (6): 1193-1204.
|
Li W, Coop M R. 2019. Mechanical behaviour of Panzhihua iron tailings[J]. Canadian Geotechnical Journal, 56 (3): 420-435. doi: 10.1139/cgj-2018-0032
|
Li Y B, Li S, Liu X L, et al. 2020. Effect of particle breakage on compression properties of calcareous sands with oedometer tests[J]. Journal of Engineering Geology, 28 (2): 352-359. doi: 10.1007/s12205-020-0458-7
|
Liu C Q, Wang R. 1998. Preliminary research on physical and mechanical properties of calcareous sand[J]. Rock and Soil Mechanics, 19 (1): 32-37, 44. http://www.cnki.com.cn/Article/CJFDTotal-YTLX199801005.htm
|
Liu X, Tian C Y, Lan H X. 2020. Laboratory investigation of the mechanical properties of a rubber-calcareous sand mixture: The effect of rubber content[J]. Applied Sciences-Basel, 10(18): 6583. doi: 10.3390/app10186583
|
Liu X, Yang J, Wang G H, et al. 2016. Small-strain shear modulus of volcanic granular soil: An experimental investigation[J]. Soil Dynamics and Earthquake Engineering, 86 : 15-24. doi: 10.1016/j.soildyn.2016.04.005
|
Liu X, Yang J. 2018. Shear wave velocity in sand: effect of grain shape[J]. Géotechnique, 68 (8): 742-748. doi: 10.1680/jgeot.17.T.011
|
Lü C W, Wu H L, Shi M L. 2019. Laboratory tests of cement stabilized & solidified coral reef and sand for use of highway pavement[J]. Journal of Engineering Geology, 27 (6): 1440-1447.
|
Lü Y R, Wang M Y, Wei J Q, et al. 2018. Experimental techniques of SHPB for calcareous sand and its dynamic behaviors[J]. Explosion and Shock Waves, 38 (6): 1262-1270. http://www.researchgate.net/publication/329831559_Experimental_techniques_of_SHPB_for_calcareous_sand_and_its_dynamic_behaviors
|
Ma L J, Li Z, Wang M Y, et al. 2019. Effects of size and loading rate on the mechanical properties of single coral particles[J]. Powder Technology, 342 : 961-971. doi: 10.1016/j.powtec.2018.10.037
|
Ma Q F, Liu H L, Xiao Y, et al. 2018. Compression and particle breakage features of calcareous sand under high stress[J]. Journal of Disaster Prevention and Mitigation Engineering, 38 (6): 1020-1025. http://en.cnki.com.cn/Article_en/CJFDTotal-DZXK201806018.htm
|
McDowell G R, Bolton M D. 1998. On the micro mechanics of crushable aggregates[J]. Géotechnique, 48 (5): 667-679. doi: 10.1680/geot.1998.48.5.667
|
Morioka B, Nicholson P. 2000. Evaluation of the liquefaction potential of calcareous sand[C]//Proceedings of the International Offshore and Polar Engineering Conference: 494-500.
|
Nakata Y, Hyde A F L, Hyodo M, et al. 1999. A probabilistic approach to sand particle crushing in the triaxial test[J]. Géotechnique, 49 (5): 567-583. doi: 10.1680/geot.1999.49.5.567
|
Peng Y, Ding X M, Xiao Y, et al. 2019. Study of particle breakage behaviour of calcareous sand by dyeing tracking and particle image segmentation method[J]. Rock and Soil Mechanics, 40 (7): 2663-2672. http://en.cnki.com.cn/Article_en/CJFDTotal-YTLX201907020.htm
|
Qin Y, Yao T, Wang R, et al. 2014. Particle breakage-based analysis of deformation law of calcareous sediments under high-pressure consolidation[J]. Rock and Soil Mechanics, 35 (11): 3123-3128. http://d.wanfangdata.com.cn/periodical/ytlx201411012
|
Sharma S S, Fahey M. 2020. Deformation characteristics of two cemented calcareous soils[J]. Canadian Geotechnical Journal, 41 (6): 1139-1151. http://www.onacademic.com/detail/journal_1000037117233410_e4ba.html
|
Shen J H, Wang R. 2010. Study on engineering properties of calcareous sand[J]. Journal of Engineering Geology, 18 (S1): 26-32. http://www.gcdz.org/EN/abstract/abstract10112.shtml
|
Shen Y, Shen X, Yu Y M, et al. 2019. Macro-micro study of compressive deformation properties of calcareous sand with different particle fraction contents[J]. Rock and Soil Mechanics, 40 (10): 3733-3740. http://en.cnki.com.cn/Article_en/CJFDTotal-YTLX201910006.htm
|
Shipton B, Coop M R. 2012. On the compression behaviour of reconstituted soils[J]. Soils Found, 52 (4): 668-681. doi: 10.1016/j.sandf.2012.07.008
|
Sun J Z, Wang R. 2004. Influence of confining pressure on particle breakage and shear expansion of calcareous sand[J]. Chinese Journal of Rock Mechanics and Engineering, 23 (4): 641-644. http://www.researchgate.net/publication/296724578_Influence_of_confining_pressure_on_particle_breakage_and_shear_expansion_of_calcareous_sand
|
Wang R, Wu W J. 2019. Exploration and research on engineering geological properties of coral reefs-Engaged in coral reef research for 30 years[J]. Journal of Engineering Geology, 27 (1): 202-207. http://en.cnki.com.cn/Article_en/CJFDTotal-GCDZ201901022.htm
|
Wang S, Lei X W, Meng Q S, et al. 2020. Influence of particle shape on the density and compressive performance of calcareous sand[J]. KSCE Journal of Civil Engineering, 24 (1): 49-62. doi: 10.1007/s12205-020-0145-8
|
Wang W, Coop M R. 2016. An investigation of breakage behaviour of single sand particles using a high-speed microscope camera[J]. Géotechnique, 66 (12): 984-998. doi: 10.1680/jgeot.15.P.247
|
Wang Y Q, Hong Y, Guo Z, et al. 2018. Micro-and macro-mechanical behavior of crushable calcareous sand in South China Sea[J]. Rock and Soil Mechanics, 39 (1): 199-206, 215. http://www.researchgate.net/publication/325169482_Micro-and_macro-mechanical_behavior_of_crushable_calcareous_sand_in_South_China_Sea
|
Wei H Z, Zhao T, Meng Q S, et al. 2020. Quantifying the morphology of calcareous sands by dynamic image analysis[J]. International Journal of Geomechanics, 20(4): 04020020. doi: 10.1061/(ASCE)GM.1943-5622.0001640
|
Wen Z, Duan Z G, Li S D, et al. 2020. Shear mechanical properties of dredged coral sands from South China Sea, China[J]. Journal of Engineering Geology, 28 (1): 77-84.
|
Wood A, Mackenzie D, Burbury M, et al. 2015. Design of large diameter monopiles in chalk at westermost rough offshore wind farm[C]//Frontiers in Offshore Geotechnics Ⅲ: Proceedings of the Third International Symposium on Frontiers in Offshore Geotechnics(ISFOG 2015): 723-728.
|
Wu J P, Chu Y, Lou Z G. 1997. Influence of particle breakage on deformation and strength properties of calcareous sands[J]. Chinese Journal of Geotechnical Engineering, 19 (5): 49-55. http://trid.trb.org/view/476982
|
Wu Y, Yoshimoto M, Hyodo M, et al. 2014. Evaluation of crushing stress at critical state of granulated coal ash in triaxial test[J]. Géotechnique Letters, 4 (5): 337-342. http://www.researchgate.net/profile/Yang_Wu37/publication/271588791_Evaluation_of_crushing_stress_at_critical_state_of_granulated_coal_ash_in_triaxial_test/links/55d065bf08aee19936fd9e5b/Evaluation-of-crushing-stress-at-critical-state-of-granulated-coal-ash-in-triaxial-test.pdf
|
Yang J, Liu X. 2016. Shear wave velocity and stiffness of sand: the role of non-plastic fines[J]. Géotechnique, 66 (6): 500-514. doi: 10.1680/jgeot.15.P.205
|
Zeng K F, Liu H B. 2020. A modified Duncan-Chang E-B model with particle breakage for calcareous sand[J]. Journal of Engineering Geology, 28 (1): 94-102.
|
Zhang B S, Gu K, Li J W, et al. 2020. Study on crushing process and microscopic mechanism of calcareous sand[J]. Journal of Engineering Geology, 28 (4): 725-733.
|
Zhang B W. 2014. Particle breakage research of calcareous sand under confined compression[D]. Wuhan: Wuhan University of Technology.
|
Zhang B, Chai S X, Wei H Z, et al. 2020. Influence of coral sand particle shape on the compression properties of carol grained calcareous soil[J]. Journal of Engineering Geology, 28 (1): 85-93.
|
Zhang J M, Duan M D, Wang D L, et al. 2019. Particle strength of calcareous sand in nansha islands, south China sea[J]. Advances in Civil Engineering Materials, 8 (1): 355-364. http://www.researchgate.net/publication/333633500_Particle_Strength_of_Calcareous_Sand_in_Nansha_Islands_South_China_Sea
|
Zhang J M, Wang R, Shi X F, et al. 2005. Compression and crushing behavior of calcareous sand under confined compression[J]. Chinese Journal of Rock Mechanics and Engineering, 24 (18): 3327-3331. http://www.cnki.com.cn/Article/CJFDTotal-YSLX200518021.htm
|
Zhang J M. 2004. Study on the fundamental mechanical characteristics of calcareous sand and the influence of particle breakage[D]. Wuhan: Institute of Rock & Soil Mechanics, Chinese Academy of Sciences.
|
Zhou B, Wang J, Wang H. 2018. Three-dimensional sphericity, roundness and fractal dimension of sand particles[J]. Géotechnique, 68 (1): 18-30. doi: 10.1680/jgeot.16.P.207
|
蔡正银, 侯贺营, 张晋勋, 等. 2019. 密度与应力水平对珊瑚砂颗粒破碎影响试验研究[J]. 水利学报, 50 (2): 184-192. https://www.cnki.com.cn/Article/CJFDTOTAL-SLXB201902004.htm
|
陈火东, 魏厚振, 孟庆山, 等. 2018. 颗粒破碎对钙质砂的应力-应变及强度影响研究[J]. 工程地质学报, 26 (6): 1490-1498. doi: 10.13544/j.cnki.jeg.2017-519
|
纪文栋, 张宇亭, 裴文斌, 等. 2018. 加载方式和应力水平对珊瑚砂颗粒破碎影响的试验研究[J]. 岩石力学与工程学报, 37 (8): 1953-1961. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201808018.htm
|
蒋明镜, 吴迪, 曹培, 等. 2017. 基于SEM图片的钙质砂连通孔隙分析[J]. 岩土工程学报, 39 (S1): 1-5. doi: 10.11779/CJGE2017S1001
|
兰恒星, 赵晓霞, 伍宇明, 等. 2017. 钙质岛礁沉降变形过程分析[J]. 中国海洋大学学报, 47 (10): 1-8. https://www.cnki.com.cn/Article/CJFDTOTAL-QDHY201710002.htm
|
雷晓丹, 杨忠平, 翟航, 等. 2020. 土石混合体块石破碎影响因素的颗粒流数值研究[J]. 工程地质学报, 28 (6): 1193-1204. doi: 10.13544/j.cnki.jeg.2020-059
|
李彦斌, 李飒, 刘小龙, 等. 2020. 颗粒破碎对钙质砂压缩特性影响的试验研究[J]. 工程地质学报, 28 (2): 352-359. doi: 10.13544/j.cnki.jeg.2019-283
|
刘崇权, 汪稔. 1998. 钙质砂物理力学性质初探[J]. 岩土力学, 19 (1): 32-37, 44. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX199801005.htm
|
吕晨炜, 伍浩良, 石名磊. 2019. 水泥固化稳定珊瑚礁岩、砂吹填材料路用性能研究[J]. 工程地质学报, 27 (6): 1440-1447. doi: 10.13544/j.cnki.jeg.2019-096
|
吕亚茹, 王明洋, 魏久淇, 等. 2018. 钙质砂的SHPB实验技术及其动态力学性能[J]. 爆炸与冲击, 38 (6): 1262-1270. https://www.cnki.com.cn/Article/CJFDTOTAL-BZCJ201806009.htm
|
马启峰, 刘汉龙, 肖杨, 等. 2018. 高应力作用下钙质砂压缩及颗粒破碎特性试验研究[J]. 防灾减灾工程学报, 38 (6): 1020-1025. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXK201806018.htm
|
彭宇, 丁选明, 肖杨, 等. 2019. 基于染色标定与图像颗粒分割的钙质砂颗粒破碎特性研究[J]. 岩土力学, 40 (7): 2663-2672. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201907020.htm
|
秦月, 姚婷, 汪稔, 等. 2014. 基于颗粒破碎的钙质沉积物高压固结变形分析[J]. 岩土力学, 35 (11): 3123-3128. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201411014.htm
|
沈建华, 汪稔. 2010. 钙质砂的工程性质研究进展与展望[J]. 工程地质学报, 18 (S1): 26-32. http://www.gcdz.org/article/id/10112
|
沈杨, 沈雪, 俞演名, 等. 2019. 粒组含量对钙质砂压缩变形特性影响的宏细观研究[J]. 岩土力学, 40 (10): 3733-3740. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201910006.htm
|
孙吉主, 汪稔. 2004. 钙质砂的颗粒破碎和剪胀特性的围压效应[J]. 岩石力学与工程学报, 23 (4): 641-644. doi: 10.3321/j.issn:1000-6915.2004.04.021
|
汪稔, 吴文娟. 2019. 珊瑚礁岩土工程地质的探索与研究——从事珊瑚礁研究30年[J]. 工程地质学报, 27 (1): 202-207. doi: 10.13544/j.cnki.jeg.2019-008
|
汪轶群, 洪义, 国振, 等. 2018. 南海钙质砂宏细观破碎力学特性[J]. 岩土力学, 39 (1): 199-206, 215. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201801025.htm
|
文哲, 段志刚, 李守定, 等. 2020. 中国南海岛礁吹填珊瑚砂剪切力学特性[J]. 工程地质学报, 28 (1): 77-84. doi: 10.13544/j.cnki.jeg.2019-243
|
吴京平, 褚瑶, 楼志刚, 等. 1997. 颗粒破碎对钙质砂变形及强度特性的影响[J]. 岩土工程学报, 19 (5): 49-55. doi: 10.3321/j.issn:1000-4548.1997.05.008
|
曾凯峰, 刘华北. 2020. 考虑颗粒破碎的钙质砂修正邓肯-张E-B模型[J]. 工程地质学报, 28 (1): 94-102. doi: 10.13544/j.cnki.jeg.2019-218
|
张弼文. 2014. 侧限条件下钙质砂的颗粒破碎特性研究[D]. 武汉: 武汉理工大学.
|
张斌, 柴寿喜, 魏厚振, 等. 2020. 珊瑚颗粒形状对钙质粗粒土的压缩性能影响[J]. 工程地质学报, 28 (1): 85-93. doi: 10.13544/j.cnki.jeg.2019-016
|
张丙树, 顾凯, 李金文, 等. 2020. 钙质砂破碎过程及其微观机制试验研究[J]. 工程地质学报, 28 (4): 725-733. doi: 10.13544/j.cnki.jeg.2019-312
|
张家铭, 汪稔, 石祥峰, 等. 2005. 侧限条件下钙质砂压缩和破碎特性试验研究[J]. 岩石力学与工程学报, 24 (18): 3327-3331. doi: 10.3321/j.issn:1000-6915.2005.18.022
|
张家铭. 2004. 钙质砂基本力学性质及颗粒破碎影响研究[D]. 武汉: 中国科学院武汉岩土力学研究所.
|