Volume 29 Issue 6
Dec.  2021
Turn off MathJax
Article Contents
Chen Wenxiao, Shi Chong, Shan Zhigang, et al. 2021. Numerical simulation of subaqueous landslide based on OpenFOAM and PFC coupling method[J].Journal of Engineering Geology, 29(6): 1823-1830. doi: 10.13544/j.cnki.jeg.2021-0026
Citation: Chen Wenxiao, Shi Chong, Shan Zhigang, et al. 2021. Numerical simulation of subaqueous landslide based on OpenFOAM and PFC coupling method[J].Journal of Engineering Geology, 29(6): 1823-1830. doi: 10.13544/j.cnki.jeg.2021-0026


doi: 10.13544/j.cnki.jeg.2021-0026

  • Received Date: 2021-01-20
  • Rev Recd Date: 2021-06-15
  • Available Online: 2022-01-06
  • Publish Date: 2021-12-25
  • Subaqueous landslides are one of the common natural disasters. PFC is difficult to simulate the subaqueous fluid environment. In order to solve this problem, a calculation method using computational fluid dynamics OpenFOAM and PFC is proposed. Aiming at the problem of scale similarity in fluid-solid coupling, a similarity method suitable for this coupling method is proposed and its feasibility is verified. The dynamic characteristics and accumulation morphology of subaqueous landslides based on the coupling method are analyzed through typical cases, and compared with the results of unidirectional coupled subaqueous landslides and upland landslides. The results show that the coupling method can simulate the law of subaqueous landslide movement well, which mainly shows that the front end of the landslide body is thick and elliptical. Subaqueous landslide movement process and accumulation form are quite different from the landslides on land. The OpenFOAM-PFC bidirectional coupling method is superior to unidirectional coupling method.
  • loading
  • Alves T M. 2015. Submarine slide blocks and associated soft-sediment deformation in deep-water basins: A review[J]. Marine & Petroleum Geology, 67 : 262-285. http://www.onacademic.com/detail/journal_1000038134718310_0ef5.html
    Bi Q J. 2018. Analysis on penetrative failure characteristics of end soil in sand tunnel with shield tunneling based on PFC-CFD coupline[D]. Yantai: Ludong University.
    Cao W, Li W C, Tang B, et al. 2017. PFC study on building of 2D and 3D landslide models[J]. Journal of Engineering Geology, 25 (2): 455-462. http://search.cnki.net/down/default.aspx?filename=GCDZ201702024&dbcode=CJFD&year=2017&dflag=pdfdown
    Chen W X, Shi C, Li W Y, et al. 2020. Numerical simulation of rainfall landslide based on continuous-discontinuous coupling method[J]. Henan Science, 38 (5): 763-770.
    Chen X, Shi C, Yang J X. 2020. Effect of micro characteristics of soil-rock mixture slope on formation of sliding surface[J]. Journal of Engineering Geology, 28 (4): 813-821.
    Ding H H, Zhang T, Su Y, et al. 2013. Study on multi-span fluid conveying pipe with bidirectional FSI method[J]. Journal of Fuzhou University(Natural Science Edition), 41 (2): 242-246. http://en.cnki.com.cn/Article_en/CJFDTOTAL-FZDZ201302021.htm
    Huo Y D, Nian T K, Jiao H B, et al. 2019. Seismic stability of submarine clay slopes based on upper bound approach[J]. Journal of Engineering Geology, 27 (2): 408-414. http://en.cnki.com.cn/Article_en/CJFDTotal-GCDZ201902022.htm
    Itasca Consulting Group, Inc. 2014. PFC-Particle flow code, Ver. 5.0[S]. Minneapolis: Itasca.
    Jackson R. 2000. The dynamics of fluidized particles[M]. New York: Cambridge University Press.
    Jacobsen N G, Van Gent M R A, Wolters G. 2015. Numerical analysis of the interaction of irregular waves with two dimensional permeable coastal structures[J]. Coastal Engineering, 102 : 13-29. doi: 10.1016/j.coastaleng.2015.05.004
    Jiang M J, Zhang W C. 2014. Coupled CFD-DEM method for soils incorporating equation of state for liquid[J]. Chinese Journal of Geotechnical Engineering, 36 (5): 793-801. http://www.researchgate.net/profile/Mingjing_Jiang/publication/287288813_Coupled_CFD-DEM_method_for_soils_incorporating_equation_of_state_for_liquid/links/56812d0208ae051f9aec2e7b.pdf
    Jiang M J, Shen Z F, Wu D. 2018. CFD-DEM simulation of submarine landslide triggered by seismic loading in methane hydrate rich zone[J]. Landslides, 15 (11): 2227-2241. doi: 10.1007/s10346-018-1035-8
    Jing L, Guo S Y, Zhao T. 2019. Understanding dynamics of submarine landslide with coupled CFD-DEM[J]. Rock and Soil Mechanics, 40 (1): 388-394. http://en.cnki.com.cn/Article_en/CJFDTotal-YTLX201901041.htm
    Liu Y C, Xiao Q, Incecik A, et al. 2017. Establishing a fully coupled CFD analysis tool for floating offshore wind turbines[J]. Renewable Energy, 112 : 280-301. doi: 10.1016/j.renene.2017.04.052
    Liu G, Rong G, Peng J, et al. 2015. Numerical simulation on undrained triaxial behavior of saturated soil by a fluid coupled-DEM model[J]. Engineering Geology, 193 : 256-266. doi: 10.1016/j.enggeo.2015.04.019
    Milne J. 1897. Sub-oceanic changes[J]. The Geographical Journal, 10 (2): 129-146. doi: 10.2307/1774597
    Ni X D, Wang Y, Wang F. 2009. Simulation of particle flow code for similarity analysis of seepage deformation[J]. Journal of Civil, Architectural and Environmental Engineering, 31 (3): 55-60. http://www.researchgate.net/publication/288071157_Simulation_of_particle_flow_code_for_similarity_analysis_of_seepage_deformation
    Sassa S, Takagawa T. 2019. Liquefied gravity flow-induced tsunami: first evidence and comparison from the 2018 Indonesia Sulawesi earthquake and tsunami disasters[J]. Landslides, 16 : 195-200. doi: 10.1007/s10346-018-1114-x
    Shimizu Y. 2004. Fluid Coupling in PFC2D and PFC3D, in numerical modeling in micromechanics via particle methods[C]//Proceedings of the 2nd International PFC Symposium: 281-287.
    Shojaeefard M H, Zare J, Nourbakhsh S D. 2017. Developing a hybrid procedure of one dimensional finite element method and CFD simulation for modeling refrigerant flow mal-distribution in parallel flow condenser[J]. International Journal of Refrigeration, 73 : 39-53. doi: 10.1016/j.ijrefrig.2016.09.005
    Sun Q C, Wang G Q. 2008. Review on granular flow dynamics and its discrete element method[J]. Advances in Mechanics, 38 (1): 87-100. http://en.cnki.com.cn/Article_en/CJFDTOTAL-LXJZ200801007.htm
    Terry J P, Winspear N, Goff J, et al. 2017. Past and potential tsunami sources in the south China Sea: A Brief Synthesis[J]. Earth-Science Reviews, 167 : 47-61. doi: 10.1016/j.earscirev.2017.02.007
    Wang Y, Ni X. 2013. Hydro-mechanical analysis of piping erosion based on similarity criterion at micro-level by PFC3D[J]. European Journal of Environmental and Civil Engineering, 17 (S1): 187-204. doi: 10.1080/19648189.2013.834594?cookieSet=1
    Xiu Z X, Liu L J, Xie Q H. 2016. Sensitivity analysis of submarine landslide mass movement based on the small-scale numerical model[J]. Marine Science Bulletin, 35 (4): 380-385. http://en.cnki.com.cn/Article_en/ http://search.cnki.net/down/default.aspx?filename=HUTB201604003&dbcode=CJFD&year=2016&dflag=pdfdown
    Yang Q L. 2012. The stability evaluation and elements analysis of submarine landslides[D]. Dalian: Dalian University of Technology.
    Zhang Q, Zhang X P, Ji P Q, et al. 2020. Study of interaction mechanisms between multiple parallel weak planes and hydraulic fracture using the bonded-particle model based on moment tensors[J]. Journal of Natural Gas Science and Engineering, 76 : 103-176. http://www.sciencedirect.com/science/article/pii/S1875510020300305
    Zhang Q, Zhang X, Ji P. 2019. Numerical study of interaction between a hydraulic fracture and a weak plane using the bonded-particle model based on moment tensors[J]. Computers and Geotechnics, 105 : 79-93. doi: 10.1016/j.compgeo.2018.09.012
    Zhou L, Fan X M, Xu Q, et al. 2019. Numerical simulation and hazard prediction on movement process characteristics of Baige landslide in Jinsha river[J]. Journal of Engineering Geology, 27 (6): 1395-1404. http://en.cnki.com.cn/Article_en/CJFDTotal-GCDZ201906022.htm
    Zhu C Q, Jia Y G, Zhang M S, et al. 2016. Surface sediment strength in bed-slope of northern south China sea[J]. Journal of Engineering Geology, 24 (5): 863-870. http://www.researchgate.net/publication/309740477_Surface_sediment_strength_in_bed-slope_of_northern_South_China_Sea
    毕庆杰. 2018. 基于PFC-CFD耦合的砂层盾构隧道端头土体渗透破坏特性研究[D]. 烟台: 鲁东大学.
    曹文, 李维朝, 唐斌, 等. 2017. PFC滑坡模拟二、三维建模方法研究[J]. 工程地质学报, 25 (2): 455-462. doi: 10.13544/j.cnki.jeg.2017.02.024
    陈闻潇, 石崇, 李汪洋, 等. 2020. 基于连续-非连续耦合方法的降雨滑坡数值模拟研究[J]. 河南科学, 38 (5): 763-770. doi: 10.3969/j.issn.1004-3918.2020.05.013
    陈晓, 石崇, 杨俊雄. 2020. 土石混合体边坡细观特征对滑面形成影响研究[J]. 工程地质学报, 28 (4): 813-821. doi: 10.13544/j.cnki.jeg.2019-332
    丁欢欢, 张挺, 苏燕, 等. 2013. 基于双向流固耦合的多跨过桥水管模态分析[J]. 福州大学学报(自然科学版), 41 (2): 242-246.
    霍沿东, 年廷凯, 焦厚滨, 等. 2019. 基于极限分析上限方法的海底斜坡地震稳定性[J]. 工程地质学报, 27 (2): 408-414. doi: 10.13544/j.cnki.jeg.2017-621
    蒋明镜, 张望城. 2014. 一种考虑流体状态方程的土体CFD-DEM耦合数值方法[J]. 岩土工程学报, 36 (5): 793-801. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201405002.htm
    景路, 郭颂怡, 赵涛. 2019. 基于流体动力学-离散单元耦合算法的海底滑坡动力学分析[J]. 岩土力学, 40 (1): 388-394. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201901041.htm
    倪小东, 王媛, 王飞. 2009. 渗透变形中相似性问题的颗粒流模拟[J]. 土木建筑与环境工程, 31 (3): 55-60. https://www.cnki.com.cn/Article/CJFDTOTAL-JIAN200903009.htm
    孙其诚, 王光谦. 2008. 颗粒流动力学及其离散模型评述[J]. 力学进展, 38 (1): 87-100. doi: 10.3321/j.issn:1000-0992.2008.01.006
    修宗祥, 刘乐军, 解秋红, 等. 2016. 基于小尺度数值模型的海底滑坡运动敏感性分析[J]. 海洋通报, 35 (4): 380-385. https://www.cnki.com.cn/Article/CJFDTOTAL-HUTB201604003.htm
    杨林青. 2012. 海底斜坡稳定性及滑移影响因素分析[D]. 大连: 大连理工大学.
    周礼, 范宣梅, 许强, 等. 2019. 金沙江白格滑坡运动过程特征数值模拟与危险性预测研究[J]. 工程地质学报, 27 (6): 1395-1404. doi: 10.13544/j.cnki.jeg.2019-037
    朱超祁, 贾永刚, 张民生, 等. 2016. 南海北部陆坡表层沉积物强度特征研究[J]. 工程地质学报, 24 (5): 863-870. doi: 10.13544/j.cnki.jeg.2016.05.016
  • 加载中


    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(8)  / Tables(2)

    Article views (234) PDF downloads(59) Cited by()
    Proportional views


    DownLoad:  Full-Size Img  PowerPoint