Volume 29 Issue 6
Dec.  2021
Turn off MathJax
Article Contents
Han Zhenhua, Zhang Luqing, Zhou Jian, et al. 2021. Effect of clay mineral grain characteristics on mechanical behaviours of hydrate-bearing sediments[J].Journal of Engineering Geology, 29(6): 1733-1743. doi: 10.13544/j.cnki.jeg.2021-0052
Citation: Han Zhenhua, Zhang Luqing, Zhou Jian, et al. 2021. Effect of clay mineral grain characteristics on mechanical behaviours of hydrate-bearing sediments[J].Journal of Engineering Geology, 29(6): 1733-1743. doi: 10.13544/j.cnki.jeg.2021-0052


doi: 10.13544/j.cnki.jeg.2021-0052

the Key Research Program of the Institute of Geology & Geophysics, CAS IGGCAS-201903

National Natural Science Foundation of China 42107190

  • Received Date: 2021-02-07
  • Rev Recd Date: 2021-04-02
  • Available Online: 2022-01-06
  • Publish Date: 2021-12-25
  • The mechanical parameters of hydrate-bearing sediments are the key parameters for the stability evaluation of hydrate formation. The hydrate-bearing sediments in Shenhu area of South China Sea contain large amounts of clay mineral. It is of great significance to understand the effects of clay minerals on the mechanical properties of sediments for hydrate mining. Based on triaxial compression simulation in the PFC code,we first analyzed the mechanical effects of clay mineral to the sediment without hydrate. Secondly,we analyzed the cementation effect of hydrate to mineral grains and the influence of confining pressure on the mechanical properties of the sediment. Our results indicated that the deviator stress-strain curve of the model without hydrate shows obvious strain hardening characteristics. The clay mineral content,grain shape and grain arrangement have significant effects on the triaxial compression characteristics of the sediment. The increase in the content of clay mineral has a significant effect on reducing the mechanical strength of sediments. The peak strength and elastic modulus of the sediments with strip-shaped clay grain are significantly higher than those of the sediment with round-shaped clay grain,which are related to the average co-ordination number in the microscopic view. The directional arrangement of the strip-shaped clay grains makes the mechanical parameters of the model to be anisotropic. The cementation effect of hydrate on the grains can significantly increase the peak strength and elastic modulus of the model. With the increase of the interparticle cementation degree and the decrease of confining pressure,the failure mode of the hydrate-bearing sediments changes from plastic failure to brittle failure.
  • loading
  • Birchwood R,Dai J C,Shelander D,et al. 2010. Developments in gas hydrates[J]. Oilfield Review,22 (1): 18-33. http://www.researchgate.net/publication/289603995_Developments_in_gas_hydrates
    Cundall P A. 1971. A computer model for simulating progressive large scale ale movements in blocky system[C]//Proceedings of Symposium on Rock Fracture: 8-12.
    Chong Z R, Yang S H B, Babu P, et al. 2016. Review of natural gas hydrates as an energy resource: Prospects and challenges[J]. Applied Energy, 162 : 1633-1652. doi: 10.1016/j.apenergy.2014.12.061
    Cheng S, Shan H X, Zhu C Q, et al. 2018. The research and application of particle discrete element modelling in rock and soil mesoscopic characteristics and slope deformation[J]. Journal of Engineering Geology, 26 (S1): 547-553.
    Fan S S, Liang D Q, Chen Y. 2003. Development situation and preview of natural gas hydrate resource[J]. Modern Chemical Industry, 23 (9): 1-5. http://en.cnki.com.cn/Article_en/CJFDTOTAL-XDHG200309001.htm
    Hyodo M, Nakata Y, Yoshimoto N, et al. 2005. Basic research on the mechanical behavior of methane hydrate-sediments mixture[J]. Soils and Foundations, 45 (1): 75-85. http://www.researchgate.net/publication/279937652_Basic_research_on_the_mechanical_behavior_of_methane_hydrate-sediments_mixture
    Han Z H, Zhang L Q, Zhou J. 2019. Numerical investigation of mineral grain shape effects on strength and fracture behaviors of rock material[J]. Applied Sciences, 9(14): 2855. doi: 10.3390/app9142855
    Han Z H, Zhang L Q, Zhou J. 2019. Effect of mineral particle size heterogeneity on mechanical properties in PFC2D simulation[J]. Journal of Engineering Geology, 27 (4): 706-716. http://en.cnki.com.cn/Article_en/CJFDTotal-GCDZ201904002.htm
    Jung J W, Santamarina J C, Soga K. 2012. Stress-strain response of hydrate-bearing sands: numerical study using discrete element method simulations[J]. Journal of Geophysical Research: Solid Earth, 117(B4): B04202. doi: 10.1029/2011JB009040
    Jiang M J, He J, Shen Z F. 2014. Preliminary investigation on parameter inversion for three-dimensional distinct element modeling of methane hydrate[J]. Chinese Journal of Geotechnical Engineering, 36 (4): 736-744. http://www.researchgate.net/profile/Mingjing_Jiang/publication/286377749_Preliminary_investigation_on_parameter_inversion_for_three-dimensional_distinct_element_modeling_of_methane_hydrate/links/56812d4908aebccc4e0bbe7b.pdf
    Li S D, Sun Y M, Chen W C, et al. 2019. Analyses of gas production methods and offshore production tests of natural gas hydrates[J]. Journal of Engineering Geology, 27 (1): 55-68. http://en.cnki.com.cn/Article_en/CJFDTotal-GCDZ201901007.htm
    Li L D, Cheng Y F, Sun X, et al. 2012. Experimental sample preparation and mechanical properties study of hydrate bearing sediments[J]. Journal of China University of Petroleum, 36 (4): 97-101. http://en.cnki.com.cn/Article_en/CJFDTOTAL-SYDX201204020.htm
    Li Y H, Song Y C, Liu W G, et al. 2012. Effects of temperature and strain rate on strength of hydrate sediments[J]. Natural Gas Exploration & Development, 35 (1): 50-53. http://www.cnki.com.cn/Article/CJFDTotal-TRKT201201012.htm
    Li Y L, Liu C L, Liao H L, et al. 2020. Mechanical properties of the mixed system of clayey-silt sediments and natural gas hydrates[J]. Natural Gas Industry, 40 (8): 159-168.
    Liu C L, Meng G Q, Li C F, et al. 2017. Characterization of natural gas hydrate and its deposits recovered from the northern slope of the South China Sea[J]. Earth Science Frontiers, 24 (4): 41-50. http://en.cnki.com.cn/Article_en/CJFDTOTAL-DXQY201704008.htm
    Masui A, Haneda H, Ogata Y, et al. 2005. Effects of methane hydrate formation on shear strength of synthetic methane hydrate sediments[C]//The Fifteenth International Offshore and Polar Engineering Conference. Seoul, Korea: International Society of Offshore and Polar Engineers.
    Miyazaki K, Tenma N, Yamaguchi T, et al. 2017. Relationship between creep property and loading-rate dependence of strength of artificial methane-hydrate-bearing Toyoura Sand under triaxial compression[J]. Energies, 10(10): 1466. doi: 10.3390/en10101466
    Shi Y H, Zhang X H, Lu X B, et al. 2015. Experimental study on the static mechanical properties of hydrate-bearing silty-clay in the South China Sea[J]. Chinese Journal of Theoretical and Applied Mechanics, 47 (3): 521-528. http://en.cnki.com.cn/Article_en/CJFDTOTAL-LXXB201503016.htm
    Shi D D, Zhou J, Liu W B, et al. 2008. Numerical simulation for behaviors of sand with non-circular particles under monotonic shear loading[J]. Chinese Journal of Geotechnical Engineering, 30 (9): 1361-1366. http://www.cnki.com.cn/Article/CJFDTotal-YTGC200809020.htm
    Wang L, Li Y, Shen S, et al. 2019. Mechanical behaviors of gas hydrate-bearing clayey sediments of the South China Sea[J]. Journal of Environmental Geotechnics, 1-10.
    Wang L, Li Y, Shen S, et al. 2020. Undrained triaxial tests on water-saturated methane hydrate-bearing clayey-silty sediments of the South China Sea[J]. Canadian Geotechnical Journal, 58 (3): 351-366. doi: 10.1139/cgj-2019-0711
    Wang S Y, Wang L, Lu X B. 2007. Effects of gas hydrate dissociation on stability of pipe in the sea bed[J]. Journal of Engineering Geology, 15 (S1): 428-432. http://www.gcdz.org/EN/abstract/abstract10966.shtml
    Wang S Y, Luo D S, Zhang X H, et al. 2018. Experimental study of mechanical properties of hydrated clay[J]. Journal of Experimental Mechanics, 33 (2): 245-252.
    Wu N Y, Huang L, Hu G W, et al. 2017. Geological controlling factors and scientific challenges for offshore gas hydrate exploitation[J]. Marine Geology & Quaternary Geology, 37 (5): 1-11. http://en.cnki.com.cn/Article_en/CJFDTOTAL-HYDZ201705001.htm
    Yun T S, Santamarina J C, Ruppel C. 2017. Mechanical properties of sand, silt, and clay containing tetrahydrofuran hydrate[J]. Journal of Geophysical Research, 112(B4): B04106. doi: 10.1029/2006JB004484/full
    Yu Y X, Cheng Y P, Xu X M, et al. 2016. Discrete element modelling of methane hydrate soil sediments using elongated soil particles[J]. Computers and Geotechnics, 80 : 397-409. doi: 10.1016/j.compgeo.2016.03.004
    Yan R T, Wei C F, Fu X H, et al. 2013. Influence of occurrence mode of hydrate on mechanical behaviour of hydrate-bearing soils[J]. Chinese Journal of Rock Mechanics and Engineering, 32 (S2): 4115-4122.
    Zhang H, Lu H L, Liang J Q, et al. 2016. The methane hydrate accumulation controlled compellingly by sediment grain at Shenhu, northern South China Sea[J]. Chinese Science Bulletin, 61 (3): 388-397. doi: 10.1360/N972014-01395
    Zhang H W, Cheng Y F, Li M L, et al. 2017. Test on rock mechanics and establishment of strength criterion for gas hydrate reservoirs in the northern shallow sediments of South China Sea[J]. China Offshore Oil and Gas, 29 (6): 115-121. http://en.cnki.com.cn/Article_en/CJFDTOTAL-ZHSD201706015.htm
    Zhao Z, Zhang P, Song J, et al. 2019. Discrete element analysis of the effect of particle morphology on the shear strength of soft clay under low confining pressure[J]. Journal of Engineering Geology, 27 (5): 1085-1092. http://en.cnki.com.cn/Article_en/CJFDTotal-GCDZ201905019.htm
    程升, 单红仙, 朱超祁, 等. 2018. 颗粒离散元在岩土体细观特性及边坡变形中的研究应用[J]. 工程地质学报, 26 (S1): 547-553. doi: 10.13544/j.cnki.jeg.2018083
    樊拴狮, 梁德青, 陈勇. 2003. 天然气水合物资源开发现状及前景[J]. 现代化工, 23 (9): 1-5.
    蒋明镜, 贺洁, 申志福. 2014. 甲烷水合物三维离散元模拟参数反演初探[J]. 岩土工程学报, 36 (4): 736-744. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201404024.htm
    韩振华, 张路青, 周剑. 2019. 基于PFC2D模拟的矿物粒径非均质效应研究[J]. 工程地质学报, 27 (4): 706-716. doi: 10.13544/j.cnki.jeg.2017-148
    李守定, 孙一鸣, 陈卫昌, 等. 2019. 天然气水合物开采方法及海域试采分析[J]. 工程地质学报, 27 (1): 55-68. doi: 10.13544/j.cnki.jeg.2019-065
    李令东, 程远方, 孙晓, 等. 2012. 水合物的沉积物试验岩样制备及力学性质研究[J]. 中国石油大学学报(自然科学版), 36 (4): 97-101. doi: 10.3969/j.issn.1673-5005.2012.04.018
    李洋辉, 宋永臣, 刘卫国, 等. 2012. 温度和应变速率对水合物沉积物强度影响试验研究[J]. 天然气勘探与开发, 35 (1): 50-53. doi: 10.3969/j.issn.1673-3177.2012.01.011
    李彦龙, 刘昌岭, 廖华林, 等. 2020. 泥质粉砂沉积物-天然气水合物混合体系的力学特性[J]. 天然气工业, 40 (8): 159-168. doi: 10.3787/j.issn.1000-0976.2020.08.013
    刘昌岭, 孟庆国, 李承峰, 等. 2017. 南海北部陆坡天然气水合物及其赋存沉积物特征[J]. 地学前缘, 24 (4): 41-50.
    石要红, 张旭辉, 鲁晓兵, 等. 2015. 南海水合物黏土沉积物力学特性试验模拟研究[J]. 力学学报, 47 (3): 521-528. https://www.cnki.com.cn/Article/CJFDTOTAL-LXXB201503016.htm
    史旦达, 周健, 刘文白, 等. 2008. 砂土单调剪切特性的非圆颗粒模拟[J]. 岩土工程学报, 30 (9): 1361-1366. doi: 10.3321/j.issn:1000-4548.2008.09.017
    吴能友, 黄丽, 胡高伟, 等. 2017. 海域天然气水合物开采的地质控制因素和科学挑战[J]. 海洋地质与第四纪地质, 37 (5): 1-11. https://www.cnki.com.cn/Article/CJFDTOTAL-HYDZ201705001.htm
    王淑云, 王丽, 鲁晓兵. 2007. 天然气水合物分解对海床中管道稳定性的影响[J]. 工程地质学报, 15 (S1): 428-432. http://www.gcdz.org/article/id/10966
    王淑云, 罗大双, 张旭辉, 等. 2018. 含水合物黏土的力学性质试验研究[J]. 实验力学, 33 (2): 245-252. https://www.cnki.com.cn/Article/CJFDTOTAL-SYLX201802010.htm
    颜荣涛, 韦昌富, 傅鑫晖, 等. 2013. 水合物赋存模式对含水合物土力学特性的影响[J]. 岩石力学与工程学报, 32 (S2): 4115-4122. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2013S2139.htm
    张辉, 卢海龙, 梁金强, 等. 2016. 南海北部神狐海域沉积物颗粒对天然气水合物聚集的主要影响[J]. 科学通报, 61 (3): 388-397. https://www.cnki.com.cn/Article/CJFDTOTAL-KXTB201603014.htm
    张怀文, 程远方, 李梦来, 等. 2017. 南海北部深水浅层天然气水合物储层力学特性试验及强度准则建立[J]. 中国海上油气, 29 (6): 115-121. https://www.cnki.com.cn/Article/CJFDTOTAL-ZHSD201706015.htm
    赵洲, 张鹏, 宋晶, 等. 2019. 低围压下颗粒形态对软黏土抗剪强度影响的离散元分析[J]. 工程地质学报, 27 (5): 1085-1092. doi: 10.13544/j.cnki.jeg.2019109
  • 加载中


    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(16)  / Tables(3)

    Article views (212) PDF downloads(42) Cited by()
    Proportional views


    DownLoad:  Full-Size Img  PowerPoint