Volume 29 Issue 6
Dec.  2021
Turn off MathJax
Article Contents
Wu Bing, Zheng Jingbin, Wang Dong. 2021. Study of bearing capacity of surface circular footing on stiff-soft-stiff clays [J].Journal of Engineering Geology, 29(6): 1744-1751. doi: 10.13544/j.cnki.jeg.2021-0091
Citation: Wu Bing, Zheng Jingbin, Wang Dong. 2021. Study of bearing capacity of surface circular footing on stiff-soft-stiff clays [J].Journal of Engineering Geology, 29(6): 1744-1751. doi: 10.13544/j.cnki.jeg.2021-0091

STUDY OF BEARING CAPACITY OF SURFACE CIRCULAR FOOTING ON STIFF-SOFT-STIFF CLAYS

doi: 10.13544/j.cnki.jeg.2021-0091
Funds:

the National Natural Science Foundation of China 51809247

the National Natural Science Foundation of China U1806230

the Natural Science Foundation of Shandong ZR2018BEE043

  • Received Date: 2021-03-04
  • Rev Recd Date: 2021-05-21
  • Available Online: 2022-01-06
  • Publish Date: 2021-12-25
  • The stratigraphic configurations for the design of offshore shallow foundations usually involve multi-layer soil profiles due to their large sizes. The stiff-soft-stiff clay deposit is one of the most prevalent configurations. Design methods are not available in the current API and ISO standards for shallow foundations to estimate the bearing capacity of a footing on stiff-soft-stiff clays. Based on the "bottom-up" approach recommended for spudcan foundations of jack-up rig,this paper assumes an analytical model that sums the resistances from the punching shear of the stiff-soft layering system and the squeezing of the soft-stiff layering system. The rationality of this predictive model is verified based on comprehensive FE analyses. The comparison between the predictions from "bottom-up" approach and FE analyses indicates that the assumed model is reasonable and realistic. However,the resistance due to squeezing response is significantly underestimated by the current design formula. Detailed investigations are carried out. It is revealed that this is mainly because the effect of the overlying stiff clay on the squeezing mechanism is neglected. Based on the findings,an improved design formula is proposed for the squeezing response and hence for the design of circular foundations on stiff-soft-stiff clays.
  • loading
  • API RP 2GEO. 2014. Recommended practice for geotechnical and foundation design considerations[S]. Washington DC: American Petroleum Institute.
    Brown J D, Meyerhofg G. 1969. Experimental study of bearing capacity in layered clays[C]//Proceeding of 7th International Conference on Soil Mechanics and Foundation Engineering, 2 : 45-51.
    Cox A D, Eason G, Hopkin H G. 1961. Axially symmetric plastic deformation in soils[J]. Proceedings of the Royal Society A, 254 : 1-45. http://www.onacademic.com/detail/journal_1000036255605910_43d5.html
    Edwards D H, Zdravkovic L, Potts D M. 2005. Depth factors for undrained bearing capacity[J]. Géotechnique, 55 (10): 755-758. doi: 10.1680/geot.2005.55.10.755
    Feng X, Randolph M F, Gourvenec S, et al. 2014. Design approach for rectangular mudmats under fully three-dimensional loading[J]. Géotechnique, 64 (1): 51-63. doi: 10.1680/geot.13.P.051
    Gourvenec S, Randolph M F, Kingsnorth O. 2006. Undrained bearing capacity of square and rectangular footings[J]. International Journal of Geomechanics, 6 (3): 147-157. doi: 10.1061/(ASCE)1532-3641(2006)6:3(147)
    Hossain M S, Randolph M F. 2009. New mechanism-based design approach for spudcan foundations on single layer clay[J]. Journal of Geotechnical and Geoenvironmental Engineering, 135 (9): 1264-1274. doi: 10.1061/(ASCE)GT.1943-5606.0000054
    ISO. 2016a. Petroleum and natural gas industries-Specific requirements for offshore structures-Part 4: Geotechnical and foundation design considerations(ISO 19901-4)[S]. Geneva: International Organization for Standardization.
    ISO. 2016b. Petroleum and natural gas industries—Site specific assessment of mobile offshore units-Part 1: Jack-ups(ISO 19905-1)[S]. Geneva: International Organization for Standardization.
    Li S, Wang Y C, Wu X Z, et al. 2015. Centrifugal model tests on mechanism of spudcan penetration of jack-up drilling platform in egg-shell layered soil[J]. Chinese Journal of Geotechnical Engineering, 37 (3): 479-486. http://en.cnki.com.cn/Article_en/CJFDTOTAL-YTGC201503013.htm
    Liu Q B, Lehane B M, Tian Y. 2020. Bearing capacity and stiffness of embedded circular footings on stiff-over-soft clay[J]. Journal of Geotechnical and Geoenvironmental Engineering, 146(11): 06020020. doi: 10.1061/(ASCE)GT.1943-5606.0002393
    Merifield R S, Nguyen V Q. 2006. Two-and three-dimensional bearing-capacity solutions for footing on two-layered clays[J]. Geomechanics and Geoengineering, 1 (2): 151-162. doi: 10.1080/17486020600632637
    Merifield R S, Sloan S W, Yu H S. 1999. Rigorous solutions for the bearing capacity of two layered clay soils[J]. Géotechnique, 49 (4): 471-490. doi: 10.1680/geot.1999.49.4.471
    Meyerhof G G, Chaplin T K. 1953. The compression and bearing capacity of cohesive layers[J]. British Journal of Applied Physics, 4 (1): 20-26. doi: 10.1088/0508-3443/4/1/305
    Salgado R, Lyamin A V, Sloan S W, et al. 2004. Two-and three-dimensional bearing capacity of foundations in clay[J]. Géotechnique, 54 (5): 297-306. doi: 10.1680/geot.2004.54.5.297
    Skempton A W. 1951. The bearing capacity of clays[C]//Proceeding of the Building Research Congress, 1 : 180-189.
    Ullah S N, Stanier S, Hu Y, et al. 2017a. Foundation punch-through in clay with sand: analytical modelling[J]. Géotechnique, 67 (8): 672-690. doi: 10.1680/jgeot.16.P.101
    Ullah S N, Stanier S, Hu Y, et al. 2017b. Foundation punch-through in clay with sand: centrifuge modelling[J]. Géotechnique, 67 (10): 870-889. doi: 10.1680/jgeot.16.P.100
    Ullah S N, Hu Y. 2017c. Peak punch-through capacity of spudcan in sand with interbedded clay: numerical and analytical modelling[J]. Canadian Geotechnical Journal, 54 (8): 1071-1088. doi: 10.1139/cgj-2016-0597
    Zheng J, Hossain M S, Wang D. 2015a. Numerical modelling of spudcan deep penetration in three-layer clays[J]. International Journal of Geomechanics, 15(6): 04014089. doi: 10.1061/(ASCE)GM.1943-5622.0000439
    Zheng J, Hossain M S, Wang D. 2015b. New design approach for spudcan penetration in nonuniform clay with an interbedded stiff layer[J]. Journal of Geotechnical and Geoenvironmental Engineering, 141(4): 04015003. doi: 10.1061/(ASCE)GT.1943-5606.0001282
    Zheng J, Hossain M S, Wang D. 2018. Estimating spudcan penetration resistance in stiff-soft-stiff clay[J]. Journal of Geotechnical and Geoenvironmental Engineering, 144(3): 04018001. doi: 10.1061/(ASCE)GT.1943-5606.0001820
    Zheng J B, Hu P, Wang D. 2018. Prediction of punch-through during spudcan installation in complex soil profiles[J]. The Ocean Engineering, 36 (3): 123-130. http://en.cnki.com.cn/Article_en/CJFDTotal-HYGC201803017.htm
    李飒, 王耀存, 吴兴州, 等. 2015. 夹层土上自升式钻井平台穿刺机理的离心模型试验研究[J]. 岩土工程学报, 37 (3): 479-486. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201503013.htm
    郑敬宾, 胡畔, 王栋. 2018. 复杂土层中自升式平台桩靴安装穿刺预测[J]. 海洋工程, 36 (3): 123-130. https://www.cnki.com.cn/Article/CJFDTOTAL-HYGC201803017.htm
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(11)  / Tables(3)

    Article views (150) PDF downloads(28) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint