Citation: | Zhou Yuan, Zheng Jingbin, Wang Dong. 2021. Study on design methods of horizontally loaded large-diameter monopile in clay [J].Journal of Engineering Geology, 29(6): 1759-1769. doi: 10.13544/j.cnki.jeg.2021-0100 |
American Petroleum Institute(API). 2014. Geotechnical and foundation design considerations[EB/OL]. (2011-1-1)[2021-3-4]. https://infostore.saiglobal.com/en-au/Standards/Product-Details-97863_SAIG_API_API_205225/?ProductID=97863_SAIG_ API_ API_205225.
|
Byrne B W, McAdam R, Burd H J, et al. 2015a. New design methods for large diameter piles under lateral loading for offshore wind applications[C]//Third International Symposium on Frontiers in Offshore Geotechnics(ISFOG 2015). Oslo Norway: [s.n.]: 705-710.
|
Byrne B W, McAdam R A, Burd H J, et al. 2015b. Field testing of large diameter piles under lateral loading for offshore wind applications[C]//Proceedings of the XVI European conference on soil mechanics and geotechnical engineering: 1255-1260.
|
Chen L P, Zhang Y K, Li D Y. 2020. Review of uplift capacity and pullout mechanism of suction caissons for offshore foundation[J]. Journal of Engineering Geology, 28 (3): 639-649.
|
Ding H Y, Liu Y G, Zhang P Y, et al. 2015. Model tests on the bearing capacity of wide shallow composite bucket foundations for offshore wind turbines in clay[J]. Ocean Engineering, 103 : 114-122. doi: 10.1016/j.oceaneng.2015.04.068
|
DNV GL. 2017. Offshore soil mechanics and geotechnical engineering (DNVGL-RP-C212)[S]. Offshore Standard.
|
DNV GL. 2018. Support structures for wind turbines (DNVGL-ST-0126)[S]. DNVGL Standard.
|
Fu D F, Zhang Y H, Aamodt K K, et al. 2020. A multi-spring model for monopile analysis in soft clays[J]. Marine Structures, 72: 102768. doi: 10.1016/j.marstruc.2020.102768
|
Gong W M, Huo S L, Yang C, et al. 2015. Experimental study on horizontal bearing capacity of large diameter steel pipe pile for offshore wind farm[J]. Journal of Hydraulic Engineering, 46 (S1): 34-39. http://www.researchgate.net/publication/283231234_Experimental_study_on_horizontal_bearing_capacity_of_large_diameter_steel_pipe_pile_for_offshore_wind_farm
|
Grimstad G, Andresen L, Jostad H P. 2012. NGI-ADP: anisotropic shear strength model for clay[J]. International Journal for Numerical and Analytical Methods in Geomechnics, 36 (4): 483-497. doi: 10.1002/nag.1016
|
Jeanjean P. 2009. Re-assessment of p-y curves for soft clays from centrifuge testing and fintie element modeling[C]//Offshore technology conference. Houston, Texas: [s.n.].
|
Li H Y, Chi H M, Cao E Z, et al. 2019. Optimization design of replacement layer of compacted fill for WTG foundation in collapsible loess area[J]. Journal of Engineering Geology, 27(S): 89-94.
|
Liu X L, Lu Y, Wang Y, et al. 2020. Exploration of marine resources and marine engineering geology: Summary on the 2nd international symposium on marine engineering geology[J]. Journal of Engineering Geology, 28 (1): 169-177.
|
Matlock H. 1970. Correlations for design of laterally loaded piles in soft clay[C]//Offshore Technology Conference. Houston, Texas. [s.n.]: 577-588.
|
Ma J X, Zhang M Y, Wang Y H. 2020. Current status and prospects of test techniques for prestressed high strength concrete pipe pile[J]. Journal of Engineering Geology, 28 (4): 896-906.
|
Meng X W, Zhai E D, Xu C S. 2019. Research on the applicability of p-y curve to large-diameter monopiles under layer soil[J]. Ocean Technology, 38 (2): 105-112.
|
Monajemi H, Razak H A. 2009. Finite element modeling of suction anchors under combined loading[J]. Marine Structures, 22 (4): 660-669. doi: 10.1016/j.marstruc.2009.02.001
|
Page A M, Skau K S, Jostad H P, et al. 2017. A new foundation model for integrated analyses of monopile-based offshore wind turbines[J]. Energy Procedia 137 : 100-107. doi: 10.1016/j.egypro.2017.10.337
|
Qi W G, Tian J K, Zheng H Y, et al. 2014. Bearing capacity of the high-rise pile cap foundation for offshore wind turbines[J]. IOP Conference Series Earth and Environmental Science, 93(1): 012037. http://www.researchgate.net/profile/Fu-Ping_Gao/publication/269047564_Bearing_Capacity_of_the_High-Rise_Pile_Cap_Foundation_for_Offshore_Wind_Turbines/links/55abbfa608aea3d086851dab.pdf
|
Ramírez L, Fraile D, Brindley G. 2020. Offshore wind in Europe: Key trends and statistics 2019[EB/OL]. (2020-2-6)[2021-3-4]. https://windeurope.org/data-and-analysis/product/offshore-wind-in-europe-key-trends-and-statistics-2019/
|
Reese L C, Cox W R, Koop F D. 1974. Analysis of laterally loaded piles in sand[C]//Offshore Technology Conference. Houston, Texas: [s.n.].
|
Wang L, Lai Y, Hong Y, et al. 2020. A unified lateral soil reaction model for monopiles in soft clay considering various length-to-diameter(L/D) ratios[J]. Ocean Engineering, 212: 107492. doi: 10.1016/j.oceaneng.2020.107492
|
Zhang H Y, Liu R, Yuan Y, et al. 2020. A modified p-y curve method for offshore large-diameter monopile foundations[J]. Journal of Hydraulic Engineering, 51 (2): 201-211.
|
Zhang Y, Andersen K H, Tedesco G. 2017a. Ultimate bearing capacity of laterally loaded piles in clay-some practical considerations[J]. Marine Structures, 50 : 260-275. http://smartsearch.nstl.gov.cn/paper_detail.html?id=fe777e012e6827115e089a6cdc791c9f
|
Zhang Y, Andersen K H. 2017b. Scaling of lateral pile p-y response in clay from laboratory stress-strain curves[J]. Marine Structures, 53 : 124-135. doi: 10.1016/j.marstruc.2017.02.002
|
Zhang Y, Andersen K H. 2019. Soil reaction curves for monopiles in clay[J]. Marine Structures, 65 : 94-113. doi: 10.1016/j.marstruc.2018.12.009
|
Zou X, Hu Y, Hossain M S, et al. 2018. Capacity of skirted foundations in sand-over-clay under combined VHM loading[J]. Ocean Engineering, 159 : 201-218. doi: 10.1016/j.oceaneng.2018.04.007
|
陈林平, 张雨坤, 李大勇. 2020. 吸力基础抗拔与拔出机理的研究进展[J]. 工程地质学报, 28 (3): 639-649. doi: 10.13544/j.cnki.jeg.2019-024
|
龚维明, 霍少磊, 杨超, 等. 2015. 海上风机大直径钢管桩基础水平承载特性试验研究[J]. 水利学报, 46 (S1): 34-39. https://www.cnki.com.cn/Article/CJFDTOTAL-SLXB2015S1007.htm
|
李红有, 迟洪明, 曹恩志, 等. 2019. 湿陷性黄土地区风机基础换填方案优化设计[J]. 工程地质学报, 27(增): 89-94. doi: 10.13544/j.cnki.jeg.2019125
|
刘晓磊, 陆杨, 王胤, 等. 2020. 海洋资源开发与海洋工程地质——第二届国际海洋工程地质学术研讨会(ISMEG 2019)总结[J]. 工程地质学报, 28 (1): 169-177. doi: 10.13544/j.cnki.jeg.2019-493
|
马加骁, 张明义, 王永洪. 2020. 预应力高强度混凝土管桩桩身受力特性测试技术研究进展[J]. 工程地质学报, 28 (4): 896-906. doi: 10.13544/j.cnki.jeg.2019-290
|
孟晓伟, 翟恩地, 许成顺. 2019. p-y曲线对成层土体中大直径单桩的适用性研究[J]. 海洋技术学报, 38 (2): 105-112. https://www.cnki.com.cn/Article/CJFDTOTAL-HYJS201902016.htm
|
张海洋, 刘润, 袁宇, 等. 2020. 海上大直径单桩基础p-y曲线修正[J]. 水利学报, 51 (2): 201-211. https://www.cnki.com.cn/Article/CJFDTOTAL-SLXB202002008.htm
|