Volume 29 Issue 6
Dec.  2021
Turn off MathJax
Article Contents
Zhou Yuan, Zheng Jingbin, Wang Dong. 2021. Study on design methods of horizontally loaded large-diameter monopile in clay [J].Journal of Engineering Geology, 29(6): 1759-1769. doi: 10.13544/j.cnki.jeg.2021-0100
Citation: Zhou Yuan, Zheng Jingbin, Wang Dong. 2021. Study on design methods of horizontally loaded large-diameter monopile in clay [J].Journal of Engineering Geology, 29(6): 1759-1769. doi: 10.13544/j.cnki.jeg.2021-0100


doi: 10.13544/j.cnki.jeg.2021-0100

National Natural Science Foundation of China 51809247

National Natural Science Foundation of China U1806230

Natural Science Foundation of Shandong Province ZR2018BEE043

  • Received Date: 2021-03-08
  • Rev Recd Date: 2021-04-30
  • Available Online: 2022-01-06
  • Publish Date: 2021-12-25
  • This paper compares four design methods of horizontal loaded monopile under monotonic loading in clay. They include API method based on p-y spring model,Zhang et al.(2017b) method based on p-y spring model,Wang et al.(2020) method based on double-spring model,and Fu et al.(2020) method based on triple-spring model. Two typical length-diameter ratios of large diameter monopile(L/D=5 and 10) are considered. The four methods are analyzed by comparing with the results of 3D finite element analysis. The influence of different parameters on the prediction results is discussed. The results show that:(1)For the deflection and rotation of a large diameter monopile,the current API method is the most conservative,while Wang et al.(2020) method provides the lowest predictive results. (2)Fu et al.(2020) method not only incorporates the shear force at pile tip and the distributed moment along the pile induced by frictional resistance,but also is capable of capturing the effects of initial shear modulus and soil ductility on horizontal response,which makes it superior to the other three methods; (3)In the design of monopile using Fu et al.(2020) method,the larger the interface roughness coefficient α is,the greater the pile deflection and rotation are. The influence is more significant with larger length-diameter ratios. The effect of coefficient ξp2 related to the distributed moment along the pile is relatively limited,which is negligible for L/D≥10.
  • loading
  • American Petroleum Institute(API). 2014. Geotechnical and foundation design considerations[EB/OL]. (2011-1-1)[2021-3-4]. https://infostore.saiglobal.com/en-au/Standards/Product-Details-97863_SAIG_API_API_205225/?ProductID=97863_SAIG_ API_ API_205225.
    Byrne B W, McAdam R, Burd H J, et al. 2015a. New design methods for large diameter piles under lateral loading for offshore wind applications[C]//Third International Symposium on Frontiers in Offshore Geotechnics(ISFOG 2015). Oslo Norway: [s.n.]: 705-710.
    Byrne B W, McAdam R A, Burd H J, et al. 2015b. Field testing of large diameter piles under lateral loading for offshore wind applications[C]//Proceedings of the XVI European conference on soil mechanics and geotechnical engineering: 1255-1260.
    Chen L P, Zhang Y K, Li D Y. 2020. Review of uplift capacity and pullout mechanism of suction caissons for offshore foundation[J]. Journal of Engineering Geology, 28 (3): 639-649.
    Ding H Y, Liu Y G, Zhang P Y, et al. 2015. Model tests on the bearing capacity of wide shallow composite bucket foundations for offshore wind turbines in clay[J]. Ocean Engineering, 103 : 114-122. doi: 10.1016/j.oceaneng.2015.04.068
    DNV GL. 2017. Offshore soil mechanics and geotechnical engineering (DNVGL-RP-C212)[S]. Offshore Standard.
    DNV GL. 2018. Support structures for wind turbines (DNVGL-ST-0126)[S]. DNVGL Standard.
    Fu D F, Zhang Y H, Aamodt K K, et al. 2020. A multi-spring model for monopile analysis in soft clays[J]. Marine Structures, 72: 102768. doi: 10.1016/j.marstruc.2020.102768
    Gong W M, Huo S L, Yang C, et al. 2015. Experimental study on horizontal bearing capacity of large diameter steel pipe pile for offshore wind farm[J]. Journal of Hydraulic Engineering, 46 (S1): 34-39. http://www.researchgate.net/publication/283231234_Experimental_study_on_horizontal_bearing_capacity_of_large_diameter_steel_pipe_pile_for_offshore_wind_farm
    Grimstad G, Andresen L, Jostad H P. 2012. NGI-ADP: anisotropic shear strength model for clay[J]. International Journal for Numerical and Analytical Methods in Geomechnics, 36 (4): 483-497. doi: 10.1002/nag.1016
    Jeanjean P. 2009. Re-assessment of p-y curves for soft clays from centrifuge testing and fintie element modeling[C]//Offshore technology conference. Houston, Texas: [s.n.].
    Li H Y, Chi H M, Cao E Z, et al. 2019. Optimization design of replacement layer of compacted fill for WTG foundation in collapsible loess area[J]. Journal of Engineering Geology, 27(S): 89-94.
    Liu X L, Lu Y, Wang Y, et al. 2020. Exploration of marine resources and marine engineering geology: Summary on the 2nd international symposium on marine engineering geology[J]. Journal of Engineering Geology, 28 (1): 169-177.
    Matlock H. 1970. Correlations for design of laterally loaded piles in soft clay[C]//Offshore Technology Conference. Houston, Texas. [s.n.]: 577-588.
    Ma J X, Zhang M Y, Wang Y H. 2020. Current status and prospects of test techniques for prestressed high strength concrete pipe pile[J]. Journal of Engineering Geology, 28 (4): 896-906.
    Meng X W, Zhai E D, Xu C S. 2019. Research on the applicability of p-y curve to large-diameter monopiles under layer soil[J]. Ocean Technology, 38 (2): 105-112.
    Monajemi H, Razak H A. 2009. Finite element modeling of suction anchors under combined loading[J]. Marine Structures, 22 (4): 660-669. doi: 10.1016/j.marstruc.2009.02.001
    Page A M, Skau K S, Jostad H P, et al. 2017. A new foundation model for integrated analyses of monopile-based offshore wind turbines[J]. Energy Procedia 137 : 100-107. doi: 10.1016/j.egypro.2017.10.337
    Qi W G, Tian J K, Zheng H Y, et al. 2014. Bearing capacity of the high-rise pile cap foundation for offshore wind turbines[J]. IOP Conference Series Earth and Environmental Science, 93(1): 012037. http://www.researchgate.net/profile/Fu-Ping_Gao/publication/269047564_Bearing_Capacity_of_the_High-Rise_Pile_Cap_Foundation_for_Offshore_Wind_Turbines/links/55abbfa608aea3d086851dab.pdf
    Ramírez L, Fraile D, Brindley G. 2020. Offshore wind in Europe: Key trends and statistics 2019[EB/OL]. (2020-2-6)[2021-3-4]. https://windeurope.org/data-and-analysis/product/offshore-wind-in-europe-key-trends-and-statistics-2019/
    Reese L C, Cox W R, Koop F D. 1974. Analysis of laterally loaded piles in sand[C]//Offshore Technology Conference. Houston, Texas: [s.n.].
    Wang L, Lai Y, Hong Y, et al. 2020. A unified lateral soil reaction model for monopiles in soft clay considering various length-to-diameter(L/D) ratios[J]. Ocean Engineering, 212: 107492. doi: 10.1016/j.oceaneng.2020.107492
    Zhang H Y, Liu R, Yuan Y, et al. 2020. A modified p-y curve method for offshore large-diameter monopile foundations[J]. Journal of Hydraulic Engineering, 51 (2): 201-211.
    Zhang Y, Andersen K H, Tedesco G. 2017a. Ultimate bearing capacity of laterally loaded piles in clay-some practical considerations[J]. Marine Structures, 50 : 260-275. http://smartsearch.nstl.gov.cn/paper_detail.html?id=fe777e012e6827115e089a6cdc791c9f
    Zhang Y, Andersen K H. 2017b. Scaling of lateral pile p-y response in clay from laboratory stress-strain curves[J]. Marine Structures, 53 : 124-135. doi: 10.1016/j.marstruc.2017.02.002
    Zhang Y, Andersen K H. 2019. Soil reaction curves for monopiles in clay[J]. Marine Structures, 65 : 94-113. doi: 10.1016/j.marstruc.2018.12.009
    Zou X, Hu Y, Hossain M S, et al. 2018. Capacity of skirted foundations in sand-over-clay under combined VHM loading[J]. Ocean Engineering, 159 : 201-218. doi: 10.1016/j.oceaneng.2018.04.007
    陈林平, 张雨坤, 李大勇. 2020. 吸力基础抗拔与拔出机理的研究进展[J]. 工程地质学报, 28 (3): 639-649. doi: 10.13544/j.cnki.jeg.2019-024
    龚维明, 霍少磊, 杨超, 等. 2015. 海上风机大直径钢管桩基础水平承载特性试验研究[J]. 水利学报, 46 (S1): 34-39. https://www.cnki.com.cn/Article/CJFDTOTAL-SLXB2015S1007.htm
    李红有, 迟洪明, 曹恩志, 等. 2019. 湿陷性黄土地区风机基础换填方案优化设计[J]. 工程地质学报, 27(增): 89-94. doi: 10.13544/j.cnki.jeg.2019125
    刘晓磊, 陆杨, 王胤, 等. 2020. 海洋资源开发与海洋工程地质——第二届国际海洋工程地质学术研讨会(ISMEG 2019)总结[J]. 工程地质学报, 28 (1): 169-177. doi: 10.13544/j.cnki.jeg.2019-493
    马加骁, 张明义, 王永洪. 2020. 预应力高强度混凝土管桩桩身受力特性测试技术研究进展[J]. 工程地质学报, 28 (4): 896-906. doi: 10.13544/j.cnki.jeg.2019-290
    孟晓伟, 翟恩地, 许成顺. 2019. p-y曲线对成层土体中大直径单桩的适用性研究[J]. 海洋技术学报, 38 (2): 105-112. https://www.cnki.com.cn/Article/CJFDTOTAL-HYJS201902016.htm
    张海洋, 刘润, 袁宇, 等. 2020. 海上大直径单桩基础p-y曲线修正[J]. 水利学报, 51 (2): 201-211. https://www.cnki.com.cn/Article/CJFDTOTAL-SLXB202002008.htm
  • 加载中


    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索


    Article views (147) PDF downloads(26) Cited by()
    Proportional views


    DownLoad:  Full-Size Img  PowerPoint