Volume 29 Issue 6
Dec.  2021
Turn off MathJax
Article Contents
Shi Youzhi, Wang Chenfei, Zhao Huali, et al. 2021. Numerical simulation of subsea shield tunneling process[J].Journal of Engineering Geology, 29(6): 1887-1897. doi: 10.13544/j.cnki.jeg.2021-0165
Citation: Shi Youzhi, Wang Chenfei, Zhao Huali, et al. 2021. Numerical simulation of subsea shield tunneling process[J].Journal of Engineering Geology, 29(6): 1887-1897. doi: 10.13544/j.cnki.jeg.2021-0165


doi: 10.13544/j.cnki.jeg.2021-0165

  • Received Date: 2021-03-29
  • Rev Recd Date: 2021-07-06
  • Available Online: 2022-01-06
  • Publish Date: 2021-12-25
  • To accurately simulate the construction mechanical effects of the subsea shield tunneling process, this study develops a three-dimensional numerical model of shield machine-grouting body-surrounding rock-seawater interaction based on the subsea shield section of Xiamen Metro Line 2. By validating the analysis results with measured data of the project, the effects of four main factors(excavation face support pressure, formation loss rate, grouting pressure, and jacking force) are further investigated. The results show that the water and soil pressure of the segment is strongly disturbed by the construction at the initial stage, and then decreases sharply and rapidly at a decrease of about 100kPa, and then decreases slowly at a decrease of about 20kPa, and finally tends to be stable. It is most reasonable to set the support pressure of the excavation face at about 320kPa. The increase of the support pressure only affects the soil deformation within a certain range in front of the excavation. Due to the large buried depth, the vertical displacement of the surface is basically not affected. The ground layer loss rate has a great influence on ground settlement, segment buoyancy, and segment internal force. As the stratum loss rate increases by 1%, the surface subsidence increases by 241.3%, the segment buoyancy decreases by 38.2% and the bending moment decreases by 23.9%. The grouting pressure has a great influence on segment buoyancy and internal force. The grouting pressure increases by 10%, segment buoyancy increases by 32.1%, and bending moment increases by 24.3%. The study also demonstrates that the jacking force has a certain influence on the axial force of the segment along the tunnel axis but has little influence on the segment floating and bending moment. This research provides a reliable analysis of the construction mechanical effects of the subsea shield tunneling process, which has an in-depth influence on the segment structure design and subsea shield construction parameter control.
  • loading
  • Chen X K, Zhu W, Wang R. 2017. Experimental study on the triaxial test of the shield backfill grouting material at initial stage[J]. Journal of Yangtze River Scientific Research Institute, 34 (4): 140-143. http://en.cnki.com.cn/Article_en/CJFDTOTAL-CJKB201704029.htm
    Fang Y, He C. 2009. Numerical analysis of earth-pressure-balance shield driving considering based on construction course[J]. Journal of Railway Engineering Society, 26 (11): 56-60. http://en.cnki.com.cn/Article_en/CJFDTOTAL-TDGC200911012.htm
    Han B M, Chen J H, Yang Y J, et al. 2020. Statistical analysis of urban rail transit operation in the world in 2019: A review[J]. Urban Rapid Rail Transit, 33 (1): 4-8.
    Han L, Ye G L, Wang J H, et al. 2015. Finite element analysis of impact of under-crossing of large shallow shield tunnel on riverbank[J]. Chinese Journal of Geotechnical Engineering, 37 (S1): 125-128. http://www.researchgate.net/publication/283689852_Finite_element_analysis_of_impact_of_under-crossing_of_large_shallow_shield_tunnel_on_riverbank
    Li K F. 2020. Study on thickness and settlement of minimum covering soil of shield tunnel crossing river[J]. Journal of Changzhou University(Natural Science Edition), 32 (1): 79-84.
    Li K F. 2020. Stability analysis and safety construction control technology research of shield crossing river[J]. Construction Safety, 35 (1): 18-21.
    Lu K D. 2020. Study on distribution characteristics of pore water pressure in the cross-river of shield tunnel[J]. Building Structure, 50 (S2): 759-763.
    Mui L C, Wang Z X, Shi W B. 2015. Theoretical and numerical simulations of face stability around shield tunnels in sand[J]. Chinese Journal of Geotechnical Engineering, 37 (1): 98-104. http://d.wanfangdata.com.cn/Periodical/ytgcxb201501011
    Qi C, He C, Feng K. 2015. Fluid-solid interaction-based mechanical characteristics of underwater shield tunnel[J]. Journal of Southwest Jiaotong University, 50 (2): 306-311, 330. http://www.researchgate.net/publication/283843029_Fluid-solid_interaction-based_mechanical_characteristics_of_underwater_shield_tunnel
    Shi Y Z, Lin S Z, Che A L. 2017. Optimization analysis of the soil small strain stiffness parameters based on deep foundation pit monitoring data[J]. Chinese Journal of Applied Mechanics, 34 (4): 654-660. http://www.researchgate.net/publication/319943458_Optimization_analysis_of_the_soil_small_strain_stiffness_parameters_based_on_deep_foundation_pit_monitoring_data
    Tang S H, Zhang X P, Liu H, et al. 2020. Research and prospect on engineering difficulties and key technologies for underwater shield tunnel in complex ground[J/OL]. Journal of Engineering Geology, 2020-06-03, https://doi.org/10.13544/j.cnki.jeg.2020-044.
    Wang J A, Zhou J X, Li F, et al. 2020. Study on fluid-solid coupling effect of large diameter underwater shield tunnel excavation[J]. Yangtze River, 51 (9): 175-182.
    Wang S Q, Cai S H, Jiang S Z. 1998. Study on simultaneous grouting material for shield tunnel[J]. Journal of Yangtze River Sciences Research Institute, 15 (4): 28-30, 38. http://en.cnki.com.cn/Article_en/CJFDTOTAL-CJKB804.006.htm
    Wei G. 2010. Selection and distribution of ground loss ratio induced by shield tunnel construction[J]. Chinese Journal of Geotechnical Engineering, 32 (9): 1354-1361. http://www.researchgate.net/publication/290652544_Selection_and_distribution_of_ground_loss_ratio_induced_by_shield_tunnel_construction
    Wen Y Q, Su D, Deng B, et al. 2020. Three dimensional numerical simulation of ground disturbance caused by DOT shield tunnelling[J]. Modern Tunnelling Technology, 57 (S1): 450-457.
    Xu J H, He C, Xia W Y. 2009. Research on coupling seepage field and stress field analyses of underwater shield tunnel[J]. Rock and Soil Mechanics, 30 (11): 3519-3522, 3527. http://d.wanfangdata.com.cn/Periodical/ytlx200911050
    Xu L M. 2020. Analysis of mechanical performance of subway shield tunnel structure with submarine weathering trough based on monitoring and calculation[J]. Journal of China & Foreign Highway, 40 (5): 219-225.
    Zhang Z Q, He C, She C G. 2005. Three dimensional finite element modeling of excavation and advancement processes of shield tunnel construction in Nanjing metro[J]. Journal of the China Railway Society, 27 (1): 84-89.
    陈喜坤, 朱伟, 王睿. 2017. 注入初期盾构壁后注浆体的三轴试验研究[J]. 长江科学院院报, 34 (4): 140-143. https://www.cnki.com.cn/Article/CJFDTOTAL-CJKB201704029.htm
    方勇, 何川. 2009. 考虑施工过程的土压平衡式盾构隧道掘进数值分析[J]. 铁道工程学报, 26 (11): 56-60. doi: 10.3969/j.issn.1006-2106.2009.11.013
    韩宝明, 陈佳豪, 杨运节, 等. 2020.2019年世界城市轨道交通运营统计与分析综述[J]. 都市快轨交通, 33 (1): 4-8. doi: 10.3969/j.issn.1672-6073.2020.01.002
    韩磊, 叶冠林, 王建华, 等. 2015. 浅覆土大直径盾构穿越对河堤影响的有限元分析[J]. 岩土工程学报, 37 (S1): 125-128. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC2015S1026.htm
    李凯飞. 2020a. 盾构隧道穿越河流最小覆土厚度及沉降研究[J]. 常州大学学报(自然科学版), 32 (1): 79-84. https://www.cnki.com.cn/Article/CJFDTOTAL-JSSY202001012.htm
    李凯飞. 2020b. 盾构穿越河流的稳定性分析及安全施工控制技术研究[J]. 建筑安全, 35 (1): 18-21. https://www.cnki.com.cn/Article/CJFDTOTAL-JZAQ202001005.htm
    路开道. 2020. 盾构隧道越江段孔隙水压力分布特性研究[J]. 建筑结构, 50 (S2): 759-763.
    缪林昌, 王正兴, 石文博. 2015. 砂土盾构隧道掘进开挖面稳定理论与颗粒流模拟研究[J]. 岩土工程学报, 37 (1): 98-104. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201501013.htm
    齐春, 何川, 封坤. 2015. 考虑流固耦合效应的水下盾构隧道受力特性[J]. 西南交通大学学报, 50 (2): 306-311, 330. doi: 10.3969/j.issn.0258-2724.2015.02.015
    施有志, 林树枝, 车爱兰. 2017. 基于深基坑监测数据的土体小应变刚度参数优化分析[J]. 应用力学学报, 34 (4): 654-660. https://www.cnki.com.cn/Article/CJFDTOTAL-YYLX201704009.htm
    唐少辉, 张晓平, 刘浩, 等. 2020. 复杂地层水下盾构隧道工程难点及关键技术研究与展望[J/OL]. 工程地质学报, 2020-06-03, https://doi.org/10.13544/j.cnki.jeg.2020-044.
    王金安, 周家兴, 李飞, 等. 2020. 大直径水下盾构隧道开挖流固耦合效应研究[J]. 人民长江, 51 (9): 175-182. https://www.cnki.com.cn/Article/CJFDTOTAL-RIVE202009031.htm
    王树清, 蔡胜华, 蒋硕忠. 1998. 盾构法隧道施工同步注浆材料研究[J]. 长江科学院学报, 15 (4): 28-30, 38. https://www.cnki.com.cn/Article/CJFDTOTAL-CJKB804.006.htm
    温瑜琴, 苏栋, 邓碧, 等. 2020. 双圆盾构掘进地层扰动的三维数值模拟[J]. 现代隧道技术, 57 (S1): 450-457. https://www.cnki.com.cn/Article/CJFDTOTAL-XDSD2020S1059.htm
    魏刚. 2010. 盾构隧道施工引起的土体损失率取值及分布研究[J]. 岩土工程学报, 32 (9): 1354-1361. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201009010.htm
    许金华, 何川, 夏炜洋. 2009. 水下盾构隧道渗流场应力场耦合效应研究[J]. 岩土力学, 30 (11): 3519-3522, 3527. doi: 10.3969/j.issn.1000-7598.2009.11.050
    许黎明. 2020. 基于监测与计算的海底风化槽地铁盾构隧道结构受力性能分析[J]. 中外公路, 40 (5): 219-225. https://www.cnki.com.cn/Article/CJFDTOTAL-GWGL202005043.htm
    张志强, 何川, 佘才高. 2005. 南京地铁盾构掘进施工的三维有限元仿真分析[J]. 铁道学报, 27 (1): 84-89. https://www.cnki.com.cn/Article/CJFDTOTAL-TDXB200501017.htm
  • 加载中


    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(27)  / Tables(7)

    Article views (133) PDF downloads(36) Cited by()
    Proportional views


    DownLoad:  Full-Size Img  PowerPoint