Volume 29 Issue 6
Dec.  2021
Turn off MathJax
Article Contents
Leng Hao, Hu Ruigeng, Liu Hongjun, et al. 2021. Mechanism of liquefaction seepage of upper seabed layer in the Yellow River Delta under wave-current via numerical simulation [J].Journal of Engineering Geology, 29(6): 1779-1787. doi: 10.13544/j.cnki.jeg.2021-0169
Citation: Leng Hao, Hu Ruigeng, Liu Hongjun, et al. 2021. Mechanism of liquefaction seepage of upper seabed layer in the Yellow River Delta under wave-current via numerical simulation [J].Journal of Engineering Geology, 29(6): 1779-1787. doi: 10.13544/j.cnki.jeg.2021-0169


doi: 10.13544/j.cnki.jeg.2021-0169

the National Natural Science Foundation of China 41572247

the Fundamental Research Funds for the Central Universities 202061027

  • Received Date: 2021-03-29
  • Rev Recd Date: 2021-05-31
  • Available Online: 2022-01-06
  • Publish Date: 2021-12-25
  • Dynamic pore water pressure would occur due to the wave-current acts on the seabed. If it cannot be eliminated in time,cumulative pore water pressure would grow in the seabed. The hydraulic gradient caused by the difference of pore water pressure between two adjacent points can produce seepage force,and then cause water flow. The seabed surface is a drainage interface,so an upward seepage force would form in the seabed and act on the sediment particles. It leads to the sediment transport and movement to the seabed surface,thus forming a certain range of coarse-grained layer. In this paper,numerical simulation is used to study the cumulative pore water pressure under different velocity. The influence of the hard shell layer on the cumulative pore water pressure is analyzed. The calculation method of critical scour depth of seabed established by Wang et al.(2014) is used to analyze the final depth of hard shell layer under different velocity. The results show that when the direction of wave and current is the same,it would promote the cumulative pore water pressure. The greater the velocity is,the greater the cumulative pore water pressure is. The opposite direction would inhibit the cumulative pore water pressure. The surface hard shell layer can significantly promote the dissipation of cumulative pore pressure. When the velocity U0=0m ·s-1,the thickness of the hard shell layer increases from 1m to 3m,and the depth of the extreme point decreases by 1.38m. The seepage force caused by the cumulative pore water pressure has a significant effect on the seabed sediment movement. When the velocity at both U0=0m ·s-1 and U0=1m ·s-1,the depth of the sediment incipient motion is 1.5m. If the direction of wave and current is the same,it would produce a larger ΔPL value to drive the coarse sediment particles to the surface of the seabed,but has little effect on the maximum depth of the sediment incipient motion.
  • loading
  • Cao Z G,Wang Y L,Guo Z,et al. 2019. Study on the sediment initiation considering the seepage in the swash zone[J]. Advances in Water Science,30 (4): 568-580. http://en.cnki.com.cn/Article_en/CJFDTotal-SKXJ201904013.htm
    Chang F Q, Jia Y G, Zhang J, et al. 2009. Soil property and liquefaction process of hard shell seams at subaqueous delta of Yellow River[J]. Journal of Engineering Ggology, 17 (3): 349-356. http://www.cnki.com.cn/Article/CJFDTotal-GCDZ200903012.htm
    Cheng N S, Chiew Y M. 1999. Incipient sediment motion with upward seepage[J]. Journal of Hydraulic Research, 37 (5): 665-681. doi: 10.1080/00221689909498522
    Cheng Y Z, Jiang C B, Pan Y, et al. 2012. Effect of wave-induced seepage force on incipient sediment motion[J]. Advances in Water Science, 23 (2): 256-262. http://en.cnki.com.cn/Article_en/CJFDTOTAL-SKXJ201202019.htm
    Dou G R, Dou X P, Li T L, et al. 2001. Law of sediment incipient motion under wave action[J]. Science in China: Ser E, 31 (6): 566-573.
    Duan Z, Dong C X, Zheng W J, et al. 2020. Liquefaction mechanism of sandy silt of terrace under landslide impact[J]. Journal of Engineering Geology, 28 (6): 1329-1338. http://www.researchgate.net/publication/341495877_Liquefaction_mechanism_of_terrace_sandy_silt_under_landslide_impact
    Hu R G, Liu H J, Shi W. 2021. Mechanism of silty seabed residual liquefaction understanding waves[J]. Chinese Journal of Geotechnical Engineering, 43 (7): 1228-1237.
    Hu R G, Yu P, Wang Z Y, et al. 2020. Pore pressure response and residual liquefaction of two-layer silty seabed under standing waves[J]. Ocean Engineering, 218: 108176. doi: 10.1016/j.oceaneng.2020.108176
    Hsu H C, Chen Y Y, Hus J R C, et al. 2009. Nonlinear water waves on uniform current in lagrangian coordanites[J]. Journal of Nonlinear Mathematical Physics, 16(1): 47-61. doi: 10.1142/S1402925109000054
    Jeng D S, Zhao H Y. 2014. Two-dimensional model for accumulation of pore pressure in marine sediments[J]. Journal of Waterway Port Coastal and Ocean Engineering, 141(3): 04014042. http://www98.griffith.edu.au/dspace/bitstream/10072/64009/1/97276_1.pdf
    Jia Y G, Dong H G, Shan H X, et al. 2007. Study of characters and formation mechanism of hard crust on tidal flat of Yellow River estuary[J]. Rock and Soil Mechanics, 28 (10): 2029-2035. http://www.researchgate.net/publication/285850922_Study_of_characters_and_formation_mechanism_of_hard_crust_on_tidal_flat_of_Yellow_River_estuary
    Li J, Jeng D S. 2008. Response of a porous seabed around breakwater heads[J]. Ocean Engineering, 35 (8): 864-886. http://www.onacademic.com/detail/journal_1000034031040810_5e69.html
    Li Z H, Jia Y G, Bo J S. 2019. Review of academic annual symposium of engineering investigation specialized committee of the Chinese Institute of Seismology in 2019 and the 4th symposium on development strategies of marine engineering geology[J]. Journal of Engineering Geology, 27 (6): 1483-1487. http://en.cnki.com.cn/Article_en/CJFDTotal-GCDZ201906031.htm
    Liao C C. 2016. A coupling model for interaction between wave and sandy seabed[D]. Shanghai: Shanghai Jiao Tong University.
    Liu H J, Wang X H, Jia Y G, et al. 2005. Experimental study on liquefaction properties and pore-water pressure model of saturated silt in Yellow River Delta[J]. Rock and Soil Mechanics, 26 (S2): 83-87. http://www.cnki.com.cn/Article/CJFDTotal-YTLX2005S2021.htm
    Liu X L, Lu Y, Wang Y, et al. 2020. Exploration of marine resources and marine engineering geology: Summary on the 2nd international symposium on marine engineering geology[J]. Journal of Engineering Geology, 28 (1): 169-177.
    Liu X L, Zhou J, Cui H N, et al. 2018. Characteristics of wave and current-induced residual liquefaction in two-layered sandy seabed[J]. Periodical of Ocean University of China, 48 (11): 26-32. http://en.cnki.com.cn/Article_en/CJFDTotal-QDHY201811004.htm
    Liu Z G. 2008. Study on wave-induced response of progressive pore pressure and liquefaction in seabed[D]. Dalian: Dalian University of Technology.
    Qian N, Wan Z H. 2003. Mechanics of sediment transport[M]. Beijing: Sciences Press.
    Sakai T, Hatanaka K, Mase H, et al. 1992. Wave-Induced effective stress in seabed and its momentary liquefaction[J]. Journal of Waterway Port Coastal and Ocean Engineering, 118 (2): 202-206. doi: 10.1061/(ASCE)0733-950X(1992)118:2(202)
    Sassa S, Sekiguchi H, Miyamoto J. 2001. Analysis of progressive liquefaction as a moving-boundary problem[J]. Géotechnique, 51 (10): 847-857. doi: 10.1680/geot.2001.51.10.847
    Sumer B M, Kirca V S O, Freds E J. 2012. Experimental validation of a mathematical model for seabed liquefaction under waves[J]. International Journal of Offshore and Polar Engineering, 22 (2): 133-141.
    Tsai C. 1995. Wave-induced liquefaction potential in a porous seabed in front of a breakwater[J]. Ocean Engineering, 22 (1): 1-18. doi: 10.1016/0029-8018(94)00042-5
    Wang H, Liu H J, Wang X H. 2014. Mechanism of seabed scour and its critical condition estimation by considering seepage forces[J]. Advances in Water Science, 25 (1): 115-121. http://en.cnki.com.cn/Article_en/CJFDTotal-SKXJ201401016.htm
    Wang H, Su L, Bai Y C. 2019. Research progress on consolidated silt in estuarine and coastal areas[J]. Advances in Water Science, 30 (4): 601-612. http://www.researchgate.net/publication/343240915_Research_Progress_on_Consolidated_Silt_in_Estuarine_and_Coastal_Areas
    Wang H. 2012. Mechanism of wave-induced instability of the silty seabed in the Yellow River Delta[D]. Qingdao: Ocean University of China.
    Yang Z N, Cui Y X, Guo L, et al. 2021. Semi-empirical correlation of shear wave velocity prediction in the Yellow River Delta based on CPT[J]. Marine Georesources & Geotechnology: 13 : 1-17.
    曹志刚, 王逸伦, 国振, 等. 2019. 考虑渗流效应的冲流带泥沙启动机理研究[J]. 水科学进展, 30 (4): 568-580. https://www.cnki.com.cn/Article/CJFDTOTAL-SKXJ201904013.htm
    常方强, 贾永刚, 张建, 等. 2009. 黄河水下三角洲硬壳层特征及其液化过程研究[J]. 工程地质学报, 17 (3): 349-356. doi: 10.3969/j.issn.1004-9665.2009.03.011
    程永舟, 蒋昌波, 潘昀, 等. 2012. 波浪渗流力对泥沙启动的影响[J]. 水科学进展, 23 (2): 256-262.
    窦国仁, 窦希萍, 李褆来. 2001. 波浪作用下泥沙的启动规律[J]. 中国科学E辑: 技术科学, 31 (6): 566-573.
    段钊, 董晨曦, 郑文杰, 等. 2020. 滑坡冲击作用下的阶地砂质粉土层液化机理[J]. 工程地质学报, 28 (6): 1329-1338. doi: 10.13544/j.cnki.jeg.2019-491
    胡瑞庚, 刘红军, 时伟. 2021. 驻波作用下粉土海床累积液化机制分析[J]. 岩土工程学报, 43 (7): 1228-1237. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC202107010.htm
    贾永刚, 董好刚, 单红仙, 等. 2007. 黄河三角洲粉质土硬壳层特征及成因研究[J]. 岩土力学, 28 (10): 2029-2035. doi: 10.3969/j.issn.1000-7598.2007.10.004
    李正辉, 贾永刚, 薄景山. 2019. 中国地震学会工程勘察专业委员会2019学术年会暨第四届海洋工程地质发展战略研讨会回顾[J]. 工程地质学报, 27 (6): 1483-1487. doi: 10.13544/j.cnki.jeg.2019-380
    廖晨聪. 2016. 波浪与砂质海床相互作用的耦合模型[D]. 上海: 上海交通大学.
    刘红军, 王小花, 贾永刚, 等. 2005. 黄河三角洲饱和粉土液化特性及孔压模型试验研究[J]. 岩土力学, 26 (S2): 83-87. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX2005S2021.htm
    刘小丽, 周杰, 崔浩男, 等. 2018. 波流耦合作用下双层砂质海床累积液化特征数值分析[J]. 中国海洋大学学报(自然科学版), 48 (11): 26-32. https://www.cnki.com.cn/Article/CJFDTOTAL-QDHY201811004.htm
    刘晓磊, 陆杨, 王胤, 等. 2020. 海洋资源开发与海洋工程地质——第二届国际海洋工程地质学术研讨会(ISMEG 2019)总结[J]. 工程地质学报, 28 (1): 169-177. doi: 10.13544/j.cnki.jeg.2019-493
    刘占阁. 2008. 波浪作用下海床累积孔隙水压力响应与液化分析[D]. 大连: 大连理工大学.
    钱宁, 万兆惠. 2003. 泥沙运动力学[M]. 北京: 科学出版社.
    王虎, 刘红军, 王秀海. 2014. 考虑渗流力的海床临界冲刷机理及计算方法[J]. 水科学进展, 25 (1): 115-121. https://www.cnki.com.cn/Article/CJFDTOTAL-SKXJ201401016.htm
    王虎, 粟莉, 白玉川. 2019. 河口海岸铁板砂研究进展[J]. 水科学进展, 30 (4): 601-612. https://www.cnki.com.cn/Article/CJFDTOTAL-SKXJ201904016.htm
    王虎. 2012. 波浪作用下黄河三角洲粉质土海床不稳定机制研究[D]. 青岛: 中国海洋大学.
  • 加载中


    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(8)  / Tables(2)

    Article views (146) PDF downloads(20) Cited by()
    Proportional views


    DownLoad:  Full-Size Img  PowerPoint