Citation: | Leng Hao, Hu Ruigeng, Liu Hongjun, et al. 2021. Mechanism of liquefaction seepage of upper seabed layer in the Yellow River Delta under wave-current via numerical simulation [J].Journal of Engineering Geology, 29(6): 1779-1787. doi: 10.13544/j.cnki.jeg.2021-0169 |
Cao Z G,Wang Y L,Guo Z,et al. 2019. Study on the sediment initiation considering the seepage in the swash zone[J]. Advances in Water Science,30 (4): 568-580. http://en.cnki.com.cn/Article_en/CJFDTotal-SKXJ201904013.htm
|
Chang F Q, Jia Y G, Zhang J, et al. 2009. Soil property and liquefaction process of hard shell seams at subaqueous delta of Yellow River[J]. Journal of Engineering Ggology, 17 (3): 349-356. http://www.cnki.com.cn/Article/CJFDTotal-GCDZ200903012.htm
|
Cheng N S, Chiew Y M. 1999. Incipient sediment motion with upward seepage[J]. Journal of Hydraulic Research, 37 (5): 665-681. doi: 10.1080/00221689909498522
|
Cheng Y Z, Jiang C B, Pan Y, et al. 2012. Effect of wave-induced seepage force on incipient sediment motion[J]. Advances in Water Science, 23 (2): 256-262. http://en.cnki.com.cn/Article_en/CJFDTOTAL-SKXJ201202019.htm
|
Dou G R, Dou X P, Li T L, et al. 2001. Law of sediment incipient motion under wave action[J]. Science in China: Ser E, 31 (6): 566-573.
|
Duan Z, Dong C X, Zheng W J, et al. 2020. Liquefaction mechanism of sandy silt of terrace under landslide impact[J]. Journal of Engineering Geology, 28 (6): 1329-1338. http://www.researchgate.net/publication/341495877_Liquefaction_mechanism_of_terrace_sandy_silt_under_landslide_impact
|
Hu R G, Liu H J, Shi W. 2021. Mechanism of silty seabed residual liquefaction understanding waves[J]. Chinese Journal of Geotechnical Engineering, 43 (7): 1228-1237.
|
Hu R G, Yu P, Wang Z Y, et al. 2020. Pore pressure response and residual liquefaction of two-layer silty seabed under standing waves[J]. Ocean Engineering, 218: 108176. doi: 10.1016/j.oceaneng.2020.108176
|
Hsu H C, Chen Y Y, Hus J R C, et al. 2009. Nonlinear water waves on uniform current in lagrangian coordanites[J]. Journal of Nonlinear Mathematical Physics, 16(1): 47-61. doi: 10.1142/S1402925109000054
|
Jeng D S, Zhao H Y. 2014. Two-dimensional model for accumulation of pore pressure in marine sediments[J]. Journal of Waterway Port Coastal and Ocean Engineering, 141(3): 04014042. http://www98.griffith.edu.au/dspace/bitstream/10072/64009/1/97276_1.pdf
|
Jia Y G, Dong H G, Shan H X, et al. 2007. Study of characters and formation mechanism of hard crust on tidal flat of Yellow River estuary[J]. Rock and Soil Mechanics, 28 (10): 2029-2035. http://www.researchgate.net/publication/285850922_Study_of_characters_and_formation_mechanism_of_hard_crust_on_tidal_flat_of_Yellow_River_estuary
|
Li J, Jeng D S. 2008. Response of a porous seabed around breakwater heads[J]. Ocean Engineering, 35 (8): 864-886. http://www.onacademic.com/detail/journal_1000034031040810_5e69.html
|
Li Z H, Jia Y G, Bo J S. 2019. Review of academic annual symposium of engineering investigation specialized committee of the Chinese Institute of Seismology in 2019 and the 4th symposium on development strategies of marine engineering geology[J]. Journal of Engineering Geology, 27 (6): 1483-1487. http://en.cnki.com.cn/Article_en/CJFDTotal-GCDZ201906031.htm
|
Liao C C. 2016. A coupling model for interaction between wave and sandy seabed[D]. Shanghai: Shanghai Jiao Tong University.
|
Liu H J, Wang X H, Jia Y G, et al. 2005. Experimental study on liquefaction properties and pore-water pressure model of saturated silt in Yellow River Delta[J]. Rock and Soil Mechanics, 26 (S2): 83-87. http://www.cnki.com.cn/Article/CJFDTotal-YTLX2005S2021.htm
|
Liu X L, Lu Y, Wang Y, et al. 2020. Exploration of marine resources and marine engineering geology: Summary on the 2nd international symposium on marine engineering geology[J]. Journal of Engineering Geology, 28 (1): 169-177.
|
Liu X L, Zhou J, Cui H N, et al. 2018. Characteristics of wave and current-induced residual liquefaction in two-layered sandy seabed[J]. Periodical of Ocean University of China, 48 (11): 26-32. http://en.cnki.com.cn/Article_en/CJFDTotal-QDHY201811004.htm
|
Liu Z G. 2008. Study on wave-induced response of progressive pore pressure and liquefaction in seabed[D]. Dalian: Dalian University of Technology.
|
Qian N, Wan Z H. 2003. Mechanics of sediment transport[M]. Beijing: Sciences Press.
|
Sakai T, Hatanaka K, Mase H, et al. 1992. Wave-Induced effective stress in seabed and its momentary liquefaction[J]. Journal of Waterway Port Coastal and Ocean Engineering, 118 (2): 202-206. doi: 10.1061/(ASCE)0733-950X(1992)118:2(202)
|
Sassa S, Sekiguchi H, Miyamoto J. 2001. Analysis of progressive liquefaction as a moving-boundary problem[J]. Géotechnique, 51 (10): 847-857. doi: 10.1680/geot.2001.51.10.847
|
Sumer B M, Kirca V S O, Freds E J. 2012. Experimental validation of a mathematical model for seabed liquefaction under waves[J]. International Journal of Offshore and Polar Engineering, 22 (2): 133-141.
|
Tsai C. 1995. Wave-induced liquefaction potential in a porous seabed in front of a breakwater[J]. Ocean Engineering, 22 (1): 1-18. doi: 10.1016/0029-8018(94)00042-5
|
Wang H, Liu H J, Wang X H. 2014. Mechanism of seabed scour and its critical condition estimation by considering seepage forces[J]. Advances in Water Science, 25 (1): 115-121. http://en.cnki.com.cn/Article_en/CJFDTotal-SKXJ201401016.htm
|
Wang H, Su L, Bai Y C. 2019. Research progress on consolidated silt in estuarine and coastal areas[J]. Advances in Water Science, 30 (4): 601-612. http://www.researchgate.net/publication/343240915_Research_Progress_on_Consolidated_Silt_in_Estuarine_and_Coastal_Areas
|
Wang H. 2012. Mechanism of wave-induced instability of the silty seabed in the Yellow River Delta[D]. Qingdao: Ocean University of China.
|
Yang Z N, Cui Y X, Guo L, et al. 2021. Semi-empirical correlation of shear wave velocity prediction in the Yellow River Delta based on CPT[J]. Marine Georesources & Geotechnology: 13 : 1-17.
|
曹志刚, 王逸伦, 国振, 等. 2019. 考虑渗流效应的冲流带泥沙启动机理研究[J]. 水科学进展, 30 (4): 568-580. https://www.cnki.com.cn/Article/CJFDTOTAL-SKXJ201904013.htm
|
常方强, 贾永刚, 张建, 等. 2009. 黄河水下三角洲硬壳层特征及其液化过程研究[J]. 工程地质学报, 17 (3): 349-356. doi: 10.3969/j.issn.1004-9665.2009.03.011
|
程永舟, 蒋昌波, 潘昀, 等. 2012. 波浪渗流力对泥沙启动的影响[J]. 水科学进展, 23 (2): 256-262.
|
窦国仁, 窦希萍, 李褆来. 2001. 波浪作用下泥沙的启动规律[J]. 中国科学E辑: 技术科学, 31 (6): 566-573.
|
段钊, 董晨曦, 郑文杰, 等. 2020. 滑坡冲击作用下的阶地砂质粉土层液化机理[J]. 工程地质学报, 28 (6): 1329-1338. doi: 10.13544/j.cnki.jeg.2019-491
|
胡瑞庚, 刘红军, 时伟. 2021. 驻波作用下粉土海床累积液化机制分析[J]. 岩土工程学报, 43 (7): 1228-1237. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC202107010.htm
|
贾永刚, 董好刚, 单红仙, 等. 2007. 黄河三角洲粉质土硬壳层特征及成因研究[J]. 岩土力学, 28 (10): 2029-2035. doi: 10.3969/j.issn.1000-7598.2007.10.004
|
李正辉, 贾永刚, 薄景山. 2019. 中国地震学会工程勘察专业委员会2019学术年会暨第四届海洋工程地质发展战略研讨会回顾[J]. 工程地质学报, 27 (6): 1483-1487. doi: 10.13544/j.cnki.jeg.2019-380
|
廖晨聪. 2016. 波浪与砂质海床相互作用的耦合模型[D]. 上海: 上海交通大学.
|
刘红军, 王小花, 贾永刚, 等. 2005. 黄河三角洲饱和粉土液化特性及孔压模型试验研究[J]. 岩土力学, 26 (S2): 83-87. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX2005S2021.htm
|
刘小丽, 周杰, 崔浩男, 等. 2018. 波流耦合作用下双层砂质海床累积液化特征数值分析[J]. 中国海洋大学学报(自然科学版), 48 (11): 26-32. https://www.cnki.com.cn/Article/CJFDTOTAL-QDHY201811004.htm
|
刘晓磊, 陆杨, 王胤, 等. 2020. 海洋资源开发与海洋工程地质——第二届国际海洋工程地质学术研讨会(ISMEG 2019)总结[J]. 工程地质学报, 28 (1): 169-177. doi: 10.13544/j.cnki.jeg.2019-493
|
刘占阁. 2008. 波浪作用下海床累积孔隙水压力响应与液化分析[D]. 大连: 大连理工大学.
|
钱宁, 万兆惠. 2003. 泥沙运动力学[M]. 北京: 科学出版社.
|
王虎, 刘红军, 王秀海. 2014. 考虑渗流力的海床临界冲刷机理及计算方法[J]. 水科学进展, 25 (1): 115-121. https://www.cnki.com.cn/Article/CJFDTOTAL-SKXJ201401016.htm
|
王虎, 粟莉, 白玉川. 2019. 河口海岸铁板砂研究进展[J]. 水科学进展, 30 (4): 601-612. https://www.cnki.com.cn/Article/CJFDTOTAL-SKXJ201904016.htm
|
王虎. 2012. 波浪作用下黄河三角洲粉质土海床不稳定机制研究[D]. 青岛: 中国海洋大学.
|