Citation: | Xn Tao, Zhang Zhaobin, li Shouding, et al. 2021. 31D mumerical evaluation of gas hydrate production performance of the depresurization and backillingwith in-situ supplemental heat method[J].Journal of Engineering Geology, 29(6): 1926-1941. doi: 10.13544/j.cnki.jeg.2021-0177 |
Boswell R, Collett T S. 2011. Current perspectives on gas hydrateresources[J]. Energy & Environmental Science, 4 (4): 1206-1215.
|
Chen C, Yang L, Jia R, et al. 2017. Simulation study on the effect of fracturing technology on the production efficiency of natural gashydrate[J]. Energies, 10(8): 1241. doi: 10.3390/en10081241
|
Chen L, Yamada H, Kanda Y, et al. 2017. Investigation on the dissociation flow of methane hydrate cores: Numerical modeling and experimental verification[J]. Chemical Engineering Science, 163 : 31-43. doi: 10.1016/j.ces.2017.01.032
|
Criado Y A, Alonso M, Abanades J C. 2014. Kinetics of the CaO/Ca(OH)2 hydration/dehydration reaction for thermochemical energy storageapplications[J]. Industrial & Engineering Chemistry Research, 53 (32): 12594-12601.
|
Feng Y C, Chen L, Suzuki A, et al. 2019. Enhancement of gas production from methane hydrate reservoirs by the combination of hydraulic fracturing and depressurization method[J]. Energy Conversion and Management, 184 : 194-204. doi: 10.1016/j.enconman.2019.01.050
|
Guo K, Fan S S, Wang Y H, et al. 2020. Physical and chemical characteristics analysis of hydrate samples from northern South ChinaSea[J]. Journal of Natural Gas Science and Engineering, 81: 103476. doi: 10.1016/j.jngse.2020.103476
|
Huang L, Yin Z, Wan Y, et al. 2020. Evaluation and comparison of gas production potential of the typical four gas hydrate deposits in Shenhu area, South ChinaSea[J]. Energy, 204: 117955. doi: 10.1016/j.energy.2020.117955
|
International Journal of Energy Research, 41 (7): 1004-1013.
|
Ito T, Igarashi A, Yamamoto K. 2011. Laboratory experiments of hydraulic fracturing in unconsolidatedsands[J]. Journal of MMIJ, 127(6-7): 243-248. http://www.researchgate.net/publication/274823852_Laboratory_Experiments_of_Hydraulic_Fracturing_in_Unconsolidated_Sands
|
Ju X, Liu F, Fu P, et al. 2020. Gas production from hot water circulation through hydraulic fractures in methane hydrate-bearing sediments: thc-coupled simulation of production mechanisms[J]. Energy & Fuels, 34 (4): 4448-4465. doi: 10.1021/acs.energyfuels.0c00241
|
Kamath V A. 1984. Study of heat transfer characteristics during dissociation of gas hydrates in porous media[R]. PA, USA: Pittsburgh University.
|
Konno Y, Jin Y, Yoneda J, et al. 2016. Hydraulic fracturing in methane-hydrate-bearingSand[J]. RSC Advances, 6 (77): 73148-73155. doi: 10.1039/C6RA15520K
|
Li B, Ma X, Zhang G, et al. 2020. Enhancement of gas production from natural gas hydrate reservoir by reservoir stimulation with the stratification split grouting foam mortarmethod[J]. Journal of Natural Gas Science and Engineering, 81: 103473. doi: 10.1016/j.jngse.2020.103473
|
Li S D, Li X, Wang S J, et al. 2020. A novel method for natural gas hydrate production: Depressurization and backfilling with in-situ supplementalheat[J]. Journal of Engineering Geology, 28 (2): 282-293.
|
Li S D, Sun Y M, Chen W C, et al. 2019. Analyses of gas production methods and offshore production tests of natural gashydrates[J]. Journal of Engineering Geology, 27 (1): 55-68. http://en.cnki.com.cn/Article_en/CJFDTotal-GCDZ201901007.htm
|
Li X D, Li G H, Wei J S, et al. 2018. Evaluating the effect of delayed gel breaking by P(Vac-AA)core-shell microsphere fracturing fluid gelbreaker[J]. Drilling Fluid & Completion Fluid, 35 (6): 122-125. http://www.researchgate.net/publication/332710392_Evaluating_the_Effect_of_Delayed_Gel_Breaking_by_PVac-AA_Core-Shell_Microsphere_Fracturing_Fluid_Gel_Breaker
|
Liu X, Zhang W, Qu Z, et al. 2020. Feasibility evaluation of hydraulic fracturing in hydrate-bearing sediments based on analytic hierarchy process-entropy method(AHP-EM)[J]. Journal of Natural Gas Science and Engineering, 81: 103434. doi: 10.1016/j.jngse.2020.103434
|
Long X F, Dai L, Lou B, et al. 2017. The kinetics research of thermochemical energy storage system Ca(OH)2/CaO[J]. International Journal of Energy Research, 41(7): 1004-1013. doi: 10.1002/er.3688
|
Masuda Y, Fujinaga Y, Naganawa S. 1999. Modeling and experimental studies on dissociation of methane gas hydrates in Berea sandstone cores[C]//The 3rd International Conference on GasHydrates. Salt Lake City, Utah: [s. n. ].
|
Moridis G J, Reagan M T, Queiruga A F, et al. 2019. Evaluation of the performance of the oceanic hydrate accumulation at site NGHP-02-09 in the Krishna-Godavari Basin during a production test and during single and multi-well productionscenarios[J]. Marine and Petroleum Geology, 108 : 660-696. doi: 10.1016/j.marpetgeo.2018.12.001
|
Moridis. 2014. User's manual for the hydrate v1.5 option of TOUGH+v1.5: A code for the simulation of system behavior in hydrate-bearing geologic media[R]. Berkeley, CA(United States): Lawrence Berkeley National Lab. (LBNL).
|
Reagan M, Moridis G J, Reagan M T, et al. 2008. The use of horizontal wells in gas production from hydrate accumulations[C]//6th International Conference on Gas Hydrates. United State: [s. n. ].
|
Ruan X K, Li X S, Xu C G. 2020. A review of numerical research on gas production from natural gas hydrates inChina[J]. Journal of Natural Gas Science and Engineering, 85: 103713. http://www.sciencedirect.com/science/article/pii/S1875510020305679
|
Schaube F, Koch L, Wrner A, et al. 2012. A thermodynamic and kinetic study of the De-and rehydration of Ca(OH)2 at high H2O partial pressures for thermo-chemical heatstorage[J]. Thermochimica Acta, 538 : 9-20. doi: 10.1016/j.tca.2012.03.003
|
Shan L, Fu C, Liu Y, et al. 2020. A feasibility study of using frac-packed wells to produce natural gas from subsea gas hydrateresources[J]. Energy Science & Engineering, 8 (4): 1247-1259. doi: 10.1002/ese3.590
|
Shen P F, Li G, Li X S, et al. 2021. Application of fracturing technology to increase gas production in Low-permeability hydrate reservoir: A numericalstudy[J]. Chinese Journal of Chemical Engineering, 34 : 267-277. doi: 10.1016/j.cjche.2020.07.019
|
Sun J X, Ning F L, Liu T L, et al. 2019. Gas production from a silty hydrate reservoir in the South China Sea using hydraulic fracturing: A numericalsimulation[J]. Energy Science & Engineering, 7 (4): 1106-1122.
|
Sun Y M, Li S D, Lu C, et al. 2021. The characteristics and its implications of hydraulic fracturing on hydrate-bearing clayey silt[J]. Journal of Natural Gas Science and Engineering, 95: 104189. doi: 10.1016/j.jngse.2021.104189
|
Van Genuchten M T. 1980. A closed-form equation for predicting the hydraulic conductivity of unsaturated soils[J]. Soil Science Society of America Journal, 44 (5): 892-898. doi: 10.2136/sssaj1980.03615995004400050002x
|
Wu N Y, Li Y L, Wan Y Z, et al. 2020. Prospect of marine natural gas hydrate stimulation theory and technologysystem[J]. Natural Gas Industry, 40 (8): 100-115. http://www.sciencedirect.com/science/article/pii/S2352854021000243
|
Yang L, Chen C, Jia R, et al. 2018. Influence of reservoir stimulation on marine gas hydrate conversion efficiency in different accumulation conditions[J]. Energies, 11(2): 339. doi: 10.3390/en11020339
|
Yang L, Shi F K, Zhang X H, et al. 2020. Experimental studies on the propagation characteristics of hydraulic fracture in clay hydratesediment[J]. Chinese Journal of Theoretical and Applied Mechanics, 52 (1): 224-234.
|
Ye J L, Qin X W, Xie W W, et al. 2020. Main progress of the second gas hydrate trial production in the South ChinaSea[J]. Geology in China, 47 (3): 557-568.
|
Zhao E, Hou J, Liu Y, et al. 2020. Enhanced gas production by forming artificial impermeable barriers from unconfined hydrate deposits in Shenhu area of South ChinaSea[J]. Energy, 213: 118826. doi: 10.1016/j.energy.2020.118826
|
李守定, 李晓, 王思敬, 等. 2020. 天然气水合物原位补热降压充填开采方法[J]. 工程地质学报, 28 (2): 282-293. doi: 10.13544/j.cnki.jeg.2020-061
|
李守定, 孙一鸣, 陈卫昌, 等. 2019. 天然气水合物开采方法及海域试采分析[J]. 工程地质学报, 27 (1): 55-68. doi: 10.13544/j.cnki.jeg.2019-065
|
李晓丹, 李光辉, 未九森, 等. 2018. P(Vac-AM)核壳微球型压裂液破胶剂延迟破胶效果评价[J]. 钻井液与完井液, 35 (6): 122-125. https://www.cnki.com.cn/Article/CJFDTOTAL-ZJYW201806022.htm
|
吴能友, 李彦龙, 万义钊, 等, 2020. 海域天然气水合物开采增产理论与技术体系展望[J]. 天然气工业, 40 (8): 100-115. https://www.cnki.com.cn/Article/CJFDTOTAL-TRQG202008013.htm
|
杨柳, 石富坤, 张旭辉, 等. 2020. 含水合物粉质黏土压裂成缝特征实验研究[J]. 力学学报, 52 (1): 224-234. https://www.cnki.com.cn/Article/CJFDTOTAL-LXXB202001020.htm
|
叶建良, 秦绪文, 谢文卫, 等. 2020. 中国南海天然气水合物第二次试采主要进展[J]. 中国地质, 47 (3): 557-568. https://www.cnki.com.cn/Article/CJFDTOTAL-DIZI202003002.htm
|