Volume 29 Issue 6
Dec.  2021
Turn off MathJax
Article Contents
Qian Xuesheng, Xu Jingping. 2021. Model-prototype similarity analyses for submarine debris-flow impact on undersea pipeline[J].Journal of Engineering Geology, 29(6): 1831-1840. doi: 10.13544/j.cnki.jeg.2021-0196
Citation: Qian Xuesheng, Xu Jingping. 2021. Model-prototype similarity analyses for submarine debris-flow impact on undersea pipeline[J].Journal of Engineering Geology, 29(6): 1831-1840. doi: 10.13544/j.cnki.jeg.2021-0196

MODEL-PROTOTYPE SIMILARITY ANALYSES FOR SUBMARINE DEBRIS-FLOW IMPACT ON UNDERSEA PIPELINE

doi: 10.13544/j.cnki.jeg.2021-0196
Funds:

  • Received Date: 2021-04-07
  • Rev Recd Date: 2021-09-03
  • Available Online: 2022-01-06
  • Publish Date: 2021-12-25
  • Small-scale flume tests and numerical simulations have been widely applied to investigate submarine debris-flow impact on an undersea pipeline. However, the model-prototype similarity has not yet been guaranteed, which prevents trustable application of model results to prototype scenarios. To this end, the Power-law constitutive relation is used to describe the rheological property of submarine debris flow. The scale ratios between model and prototype for various parameters are derived based on Reynolds criterion. The flume tests published in literatures are used to demonstrate the application of derived scale ratios to model-prototype similarity analyses. The parameters of a model can be converted to those of a prototype with reference to derived scale ratios, and vice versa. In addition, the applicability of derived scale ratios is discussed. It is found that, the derived scale ratios are not applicable to Ng geotechnical centrifuge model tests, but to 1g small-scale flume tests and numerical simulations with relatively high shear strain rate of a submarine debris flow. This study will provide theoretical foundation for reaching model-prototype similarity when studying submarine debris-flow impact on an undersea pipeline in a 1g environment.
  • loading
  • Bao C G, Rao X B. 1998. Principle of the geotechnical centrifuge model test[J]. Journal of Yangtze River Scientific Research Institute, 15 (2): 1-3. http://en.cnki.com.cn/Article_en/CJFDTOTAL-CJKB802.000.htm
    Bruschi R, Bughi S, Spinazzè M, et al. 2006. Impact of debris flows and turbidity currents on seafloor structures[J]. Norwegian Journal of Geology, 86 : 317-337. http://foreninger.uio.no/ngf/ngt/pdfs/NJG_86_317-337.pdf
    Dong Y K, Wang D, Randolph M F. 2017. Investigation of impact forces on pipeline by submarine landslide using material point method[J]. Ocean Engineering, 146 : 21-28. doi: 10.1016/j.oceaneng.2017.09.008
    Dutta S, Hawlader B. 2015. Numerical modeling of drag force on submarine suspended pipelines using Finite Element and Finite Volume Methods[C]//International Ocean and Polar Engineering Conference. Hawaii: [s. n.].
    Elverhøi A, Issler D, De Blasio F V, et al. 2005. Emerging insights into the dynamics of submarine debris flows[J]. Natural Hazards and Earth System Sciences, 5 : 633-648. doi: 10.5194/nhess-5-633-2005
    Fan N, Nian T K, Jiao H B, et al. 2018. Interaction between submarine landslides and suspended pipelines with a streamlined contour[J]. Marine Georesources & Geotechnology, 36 (6): 652-662. http://www.onacademic.com/detail/journal_1000040072576610_d60e.html
    Guo X S, Nian T K, Zheng D F, et al. 2018. A methodology for designing test models of the impact of submarine debris flows on pipelines based on Reynolds criterion[J]. Ocean Engineering, 166 : 226-231. doi: 10.1016/j.oceaneng.2018.08.027
    Guo X S, Zheng D F, Nian T K, et al. 2019. Effect of different span heights on the pipeline impact forces induced by deep-sea landslides[J]. Applied Ocean Research, 87 : 38-46. doi: 10.1016/j.apor.2019.03.009
    Haza Z F, Harahap I S H, Dakssa L M. 2013. Experimental studies of the flow-front and drag forces exerted by subaqueous mudflow on inclined base[J]. Natural Hazards, 68 : 587-611. doi: 10.1007/s11069-013-0643-9
    Jia Y G, Zhu C Q, Liu L P, et al. 2016. Marine geohazards: review and future perspective[J]. Acta Geologica Sinica-English Edition, 90 (4): 1455-1470. doi: 10.1111/1755-6724.12779
    Li C Y, Zhang W, Wu F D, et al. 2018. Run-out process simulation of submarine landslide using material point method[J]. Journal of Engineering Geology, 26 (S): 114-119.
    Li H W, Wang L Z, Guo Z, et al. 2015. Drag force of submarine landslides mudflow impacting on a suspended pipeline[J]. The Ocean Engineering, 33 (6): 10-19. http://en.cnki.com.cn/Article_en/CJFDTotal-HYGC201506002.htm
    Li J G, Wang Z T, Xu B, et al. 2015. Research and development of geotechnical drum centrifuge and its application to submarine landslides[J]. Journal of Yangtze River Scientific Research Institute, 32 (1): 106-111. http://en.cnki.com.cn/Article_en/CJFDTOTAL-CJKB201501024.htm
    Li J G, Xiu Z X, Shen H, et al. 2012. A review of the studies on submarine mass movement[J]. Coastal Engineering, 31 (4): 67-78. http://www.cqvip.com/QK/95947X/201204/662458365.html
    Liu J, Gao W, Li P, et al. 2018. Research process in submarine landslide and its enlightenment to study the seabed stability in the South China Sea[J]. Journal of Engineering Geology, 26 (S): 120-127.
    Liu J, Tian J L, Yi P. 2015. Impact forces of submarine landslides on offshore pipelines[J]. Ocean Engineering, 95 : 116-127. doi: 10.1016/j.oceaneng.2014.12.003
    Malgesini G, Terrile E, Zuccarino L, et al. 2018. Evaluation of debris flow impact on submarine pipelines: a methodology[C]//Offshore Technology Conference. Houston: [s. n.].
    Nian T K, Guo X S, Fan N, et al. 2018. Impact forces of submarine landslides on suspended pipelines considering the low-temperature environment[J]. Applied Ocean Research, 81 : 116-125. doi: 10.1016/j.apor.2018.09.016
    Qian X S, Xu J P, Bai Y, et al. 2020. Formation and estimation of peak impact force on suspended pipelines due to submarine debris flow[J]. Ocean Engineering, 195: 106695. doi: 10.1016/j.oceaneng.2019.106695
    Randolph M F, Gaudin C, Gourvenec S M, et al. 2011. Recent advances in offshore geotechnics for deep water oil and gas developments[J]. Ocean Engineering, 38 (7): 818-834. doi: 10.1016/j.oceaneng.2010.10.021
    Sahdi F, Gaudin C, Tom J G, et al. 2019. Mechanisms of soil flow during submarine slide-pipe impact[J]. Ocean Engineering, 186: 106079. doi: 10.1016/j.oceaneng.2019.05.061
    Sahdi F, Gaudin C, White D J, et al. 2014. Centrifuge modelling of active slide-pipeline loading in soft clay[J]. Géotechnique, 64 (1): 16-27. doi: 10.1680/geot.12.P.191
    Schofield A N. 1980. Cambridge geotechnical centrifuge operations[J]. Géotechnique, 30 (3): 227-268. doi: 10.1680/geot.1980.30.3.227
    Sun B T. 2014. Centrifuge modeling test on submarine landslides[D]. Dalian: Dalian University of Technology.
    Wang J Q, Zhang G X, Chen D X. 2019. Geological hazards in Lingshui region of Qiongdongnan Basin: type, distribution, and origin[J]. Marine Geology & Quaternary Geology, 39 (4): 87-95. http://en.cnki.com.cn/Article_en/CJFDTotal-HYDZ201904009.htm
    Wang Z T, Wang H Y, Zhang Y. 2016. CFD numerical analysis of submarine landslides impact on laid-on-seafloor pipeline[J]. Haiyang Xuebao, 38 (9): 110-117. http://en.cnki.com.cn/Article_en/ http://search.cnki.net/down/default.aspx?filename=SEAC201609011&dbcode=CJFD&year=2016&dflag=pdfdown
    White D J, Randolph M F, Gaudin C, et al. 2016. The impact of submarine slides on pipelines: outcomes from the COFS-MERIWA JIP[C]//Offshore Technology Conference. Houston: [s. n.].
    Wu S G, Qin Y S. 2009. The research of deepwater depositional system in the Northern South China Sea[J]. Acta Sedimentologica Sinica, 27 (5): 922-930. http://www.cnki.com.cn/Article/CJFDTotal-CJXB200905017.htm
    Xiu Z X, Liu L J, Xie Q H, et al. 2015. Runout prediction and dynamic characteristic analysis of a potential submarine landslide in Liwan 3-1 gas field[J]. Acta Oceanologica Sinica, 34 (7): 116-122. doi: 10.1007/s13131-015-0697-2
    Zakeri A, Høeg K, Nadim F. 2008. Submarine debris flow impact on pipelines-part I: experimental investigation[J]. Coastal Engineering, 55 : 1209-1218. doi: 10.1016/j.coastaleng.2008.06.003
    Zakeri A, Høeg K, Nadim F. 2009. Submarine debris flow impact on pipelines-part Ⅱ: numerical analysis[J]. Coastal Engineering, 56 : 1-10. doi: 10.1016/j.coastaleng.2008.06.005
    Zakeri A. 2009. Submarine debris flow impact on suspended(free-span) pipelines: normal and longitudinal drag forces[J]. Ocean Engineering, 36 : 489-499. doi: 10.1016/j.oceaneng.2009.01.018
    Zuo D Q. 1984. Theory and method of model experiment[M]. Beijing: Water Resources and Electric Power Press.
    包承纲, 饶锡保. 1998. 土工离心模型的试验原理[J]. 长江科学院院报, 15 (2): 1-3. https://www.cnki.com.cn/Article/CJFDTOTAL-CJKB802.000.htm
    李宏伟, 王立忠, 国振, 等. 2015. 海底泥流冲击悬跨管道拖曳力系数分析[J]. 海洋工程, 33 (6): 10-19. https://www.cnki.com.cn/Article/CJFDTOTAL-HYGC201506002.htm
    李家钢, 王忠涛, 徐博, 等. 2015. 土工鼓式离心机研发及在海底滑坡研究中的应用[J]. 长江科学院院报, 32 (1): 106-111. doi: 10.3969/j.issn.1001-5485.2015.01.022
    李家钢, 修宗祥, 申宏, 等. 2012. 海底滑坡块体运动研究综述[J]. 海岸工程, 31 (4): 67-78. doi: 10.3969/j.issn.1002-3682.2012.04.009
    厉成阳, 张魏, 吴方东, 等. 2018. 海底滑坡运动全过程的物质点法模拟[J]. 工程地质学报, 26(增): 114-119. doi: 10.13544/j.cnki.jeg.2018117
    刘杰, 高伟, 李萍, 等. 2018. 深海滑坡研究进展及我国南海海底稳定性研究的现状与思考[J]. 工程地质学报, 26(增): 120-127. doi: 10.13544/j.cnki.jeg.2018199
    孙柏涛. 2014. 海底滑坡的离心模型试验研究[D]. 大连: 大连理工大学.
    王俊勤, 张广旭, 陈端新, 等. 2019. 琼东南盆地陵水研究区海底地质灾害类型、分布和成因机制[J]. 海洋地质与第四纪地质, 39 (4): 87-95.
    王忠涛, 王寒阳, 张宇. 2016. 海底滑坡对置于海床表面管线作用力的CFD模拟[J]. 海洋学报, 38 (9): 110-117. doi: 10.3969/j.issn.0253-4193.2016.09.011
    吴时国, 秦蕴珊. 2009. 南海北部陆坡深水沉积体系研究[J]. 沉积学报, 27 (5): 922-930. https://www.cnki.com.cn/Article/CJFDTOTAL-CJXB200905017.htm
    左东启. 1984. 模型试验的理论和方法[M]. 北京: 水利电力出版社.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(2)  / Tables(5)

    Article views (154) PDF downloads(31) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint