Volume 29 Issue 6
Dec.  2021
Turn off MathJax
Article Contents
Kou Hailei, Zhou Nan, Yang Danliang, et al. 2021. Study on horizontal bearing capacity of suction bucket foundation for offshore wind power in soil [J]. Joumal of Engineering Geology, 29(6): 1752-1758. doi: 10.13544/j.cnki.jeg.2021-0202
Citation: Kou Hailei, Zhou Nan, Yang Danliang, et al. 2021. Study on horizontal bearing capacity of suction bucket foundation for offshore wind power in soil [J]. Joumal of Engineering Geology, 29(6): 1752-1758. doi: 10.13544/j.cnki.jeg.2021-0202

STUDY ON HORIZONTAL BEARING CAPACITY OF SUCTION BUCKET FOUNDATION FOR OFFSHORE WIND POWER IN SOIL

doi: 10.13544/j.cnki.jeg.2021-0202
Funds:

the National Natural Science Foundation of China 51879246

  • Received Date: 2021-04-09
  • Rev Recd Date: 2021-09-07
  • Available Online: 2022-01-06
  • Publish Date: 2021-12-25
  • Compared with pile foundation,suction caisson has the advantages of convenient construction and recyclability,and is more suitable for deep sea area. Horizontal cyclic response is important for the stability analysis of suction caisson as it suffers the long-term wave loads in service period. This paper presents the results of a series of 1g model tests under horizontal cyclic loading in sand. The cumulative deformation,rotation angle and rotation center of model caisson are discussed in detail. Test results indicates that the horizontal displacement of model caisson in sand accumulates with increase of cyclic numbers and horizontal loading. Under the horizontal cyclic loads of ζb=0.33 and 1.0,the change rule of bucket caisson rotation angle and rotation center is consistent with the cumulative deformation. After 50 cycles,the cumulative rotation angle is 1.43 times and 1.76 times of the first cycle under different cyclic load ratios. With the increase of the number of cycles,the position of the rotation center gradually moves upward,and finally stabilized at about 0.8L below the sand surface. This study can provide theoretical basis for the design of suction caisson as offshore wind power foundation in sand.
  • loading
  • Anderson K H, Murff J D, Randolph M F, et al. 2005. Suction anchors for deepwater applications[C]//Proceedings of the 1st International Symposium on Frontiers in Offshore Geotechnics.
    Chen W, Randolph M F. 2007. External radial stress changes and axial capacity for suction caissons in soft clay[J]. Géotechnique, 57 (6): 499-511. doi: 10.1680/geot.2007.57.6.499
    Cheng L P, Zhang Y K, Li D Y. 2020. Review of uplift capacity and pullout mechanism of suction caisson for offshore foundation[J]. Journal of Engineering Geology, 28 (3): 639-649.
    Cox J A, O'Loughlin C D, Cassidy M, et al. 2014. Centrifuge study on the cyclic performance of caissons in sand[J]. International Journal of Physical Modelling in Geotechnics, 14 (4): 99-115. doi: 10.1680/ijpmg.14.00016
    Ding H, Zhang P, Le C. 2010. Behavior of bucket foundations for offshore wind turbines under cyclic horizontal loading[C]//Proceedings of the E-Product E-Service and E-Entertainment(ICEEE).
    Foglia A, Ibsen L B. 2016. Monopod bucket foundations under cyclic lateral loading[J]. International Journal of Offshore and Polar Engineering, 26 (2): 109-115. doi: 10.17736/ijope.2016.jcr48
    Gao Z A, Li P, Xiao J J, et al. 2020. Evaluation of shear strength of unsaturated loess using conventional direct shear test[J]. Journal of Engineering Geology, 28 (2): 344-351.
    He Y P, Tan J H. 2002. The development history and typical application of bucket foundation[J]. China Offshore Platform, 17 (6): 10-14. http://www.cqvip.com/QK/90530X/200206/7276872.html
    Hossain M S, Cassidy M J, Hu Y. 2016. T-bar to spudcan design approach in single-layer clays and calcareous silts[J]. Journal of Geotechnical and Geoenvironmental Engineering, 142(7): 04016025. doi: 10.1061/(ASCE)GT.1943-5606.0001486
    Houlsby G T. 2016. Interactions in offshore foundation design[J]. Géotechnique, 66 (10): 791-825. doi: 10.1680/jgeot.15.RL.001
    Hu R L, Li X, Wang Y, et al. 2020. Research on engineering geomechanics and structural effect of soil-rock mixture[J]. Journal of Engineering Geology, 28 (2): 255-281.
    Iskander M, Ei-gharbawy S, Olson R. 2002. Performance of suction caissons in sand and clay[J]. Canadian Geotechnical Journal, 39 (3): 576-584. doi: 10.1139/t02-030
    Kang S, Zhao Q H, Peng S Q, et al. 2019. Effect of gravel-soil characters on lateral bearing capacity of pile foundation[J]. Journal of Engineering Geology, 27 (3): 559-568. http://en.cnki.com.cn/Article_en/CJFDTotal-GCDZ201903013.htm
    Kelly R B, Houlsby G T, Byrne B W. 2006. A comparison of field and laboratory tests of caisson foundations in sand and clay[J]. Géotechnique, 56 (9): 617-626. doi: 10.1680/geot.2006.56.9.617
    LeBlanc C, Byrne B W, Houlsby G T. 2010. Response of stiff piles to random two-way lateral loading[J]. Géotechnique, 60 (9): 715-721. doi: 10.1680/geot.09.T.011
    Li D Y, Chen Q J, Zhang Y K, et al. 2020. Review of horizontal loading on suction caisson of offshore wind turbines[J]. The Ocean Engineering, 38 (4): 137-147.
    Li D Y, Zhang J R, Zhang Y K, et al. 2021. Bearing behavior and accumulated rotation of modified suction caisson(MSC)in saturated sand under cyclic loading[J]. Rock and Soil Mechanics, 42 (3): 611-619.
    Li D Y, Zhang Y K, Gao Y F, et al. 2012. Model tests on penetration of suction anchors in medium-coarse sand[J]. Chinese Journal of Geotechnical Engineering, 34 (12): 2277-2283. http://www.cqvip.com/QK/95758X/201212/44164368.html
    Li X C, Sun D A, Xu Y F. 2019. Study on correlations of physical and mechanical property indexes of Yangzhou clays[J]. Journal of Engineering Geology, 27 (2): 333-340. http://en.cnki.com.cn/Article_en/CJFDTotal-GCDZ201902014.htm
    Luo L B, Wang Y, Huang J Q, et al. 2021. Study on effects of cyclic loading on lateral capacity of suction bucket foundations[J]. Acta Energiae Solaris Sinica, 42 (3): 142-147.
    Mansur C I, Kaufman R I. 1956. Pile tests, low-sill structures, Old River, Louisiana[J]. Journal of the Soil Mechanics and Foundations Division, 82 (4): 1-33. http://www.researchgate.net/publication/288847369_Pile_tests_low-sill_structure_Old_River_Louisiana
    Tran M. 2005. Installation of suction caissons in dense sand and the influence of silt and cemented layers[D]. Sydney: University of Sydney.
    Wang Z, Du S J, Wang D Y. 2009. Numerical analysis of the ultimate bearing capacity behavior of Spar platform's suction foundation[J]. The Ocean Engineering, 27 (3): 54-61. http://en.cnki.com.cn/Article_en/CJFDTOTAL-HYGC200903008.htm
    Wu K, Luan M T, Fan Q L, et al. 2008. Numerical analysis of bearing capacity behavior of bucket foundation based on elasto-plastic FEM[J]. Journal of Dalian University of Technology, 48 (5): 702-707. http://www.cnki.com.cn/Article/CJFDTotal-DLLG200805014.htm
    Zhang Z, Cheng X. 2017. Predicting the cyclic behaviour of suction caisson foundations using the finite element method[J]. Ships and Offshore Structures, 12 (7): 900-909. doi: 10.1080/17445302.2016.1158686
    Zhu B, Byrne B W, Houlsby G T. 2013. Long-term lateral cyclic response of suction caisson foundations in sand[J]. Journal of Geotechnical and Geoenvironmental Engineering, 139 (1): 73-83. doi: 10.1061/(ASCE)GT.1943-5606.0000738
    Zhu B, Kong D Q, Tong J G, et al. 2011. Model tests on penetration and pullout of suction caissons in silt[J]. Chinese Journal of Geotechnical Engineering, 33 (7): 1045-1053. doi: 10.1139/t11-021
    Zhu B, Zhang W L, Ying P P, et al. 2014. Deflection-based bearing capacity of suction caisson foundations of offshore wind turbines[J]. Journal of Geotechnical and Geoenvironmental Engineering, 140(5): 04014013. doi: 10.1061/(ASCE)GT.1943-5606.0001107
    Zhu W B, Dai G L, Yuan L J, et al. 2018. Experimental study on the long-term horizontal bearing characteristics of suction caisson foundation[J]. The Ocean Engineering, 36 (3): 26-32. http://en.cnki.com.cn/Article_en/CJFDTOTAL-HYGC201803004.htm
    陈林平, 张雨坤, 李大勇. 2020. 吸力基础抗拔与拔出机理的研究进展[J]. 工程地质学报, 28 (3): 639-649. doi: 10.13544/j.cnki.jeg.2019-024
    高志傲, 李萍, 肖俊杰, 等. 2020. 利用常规直剪试验评价非饱和黄土抗剪强度[J]. 工程地质学报, 28 (2): 344-351. doi: 10.13544/j.cnki.jeg.2019-238
    何炎平, 谭家华. 2002. 筒型基础的发展历史和典型用途[J]. 中海洋平台, 17 (6): 10-14. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGHY200206003.htm
    胡瑞林, 李晓, 王宇, 等. 2020. 土石混合体工程地质力学特性及其结构效应研究[J]. 工程地质学报, 28 (2): 255-281. doi: 10.13544/j.cnki.jeg.2020-077
    康舜, 赵其华, 彭社琴, 等. 2019. 碎石土土体性状对桩基水平承载能力的影响[J]. 工程地质学报, 27 (3): 559-568. doi: 10.13544/j.cnki.jeg.2018-231
    李大勇, 陈庆剑, 张雨坤, 等. 2020. 海上风机吸力基础的水平受荷研究综述[J]. 海洋工程, 38 (4): 137-147. https://www.cnki.com.cn/Article/CJFDTOTAL-HYGC202004017.htm
    李大勇, 张景睿, 张雨坤, 等. 2021. 饱和砂土中裙式吸力基础水平循环特性和累积转角变化规律[J]. 岩土力学, 42 (3): 611-619. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX202103003.htm
    李大勇, 张雨坤, 高玉峰, 等. 2012. 中粗砂中吸力锚的负压沉贯模型试验研究[J]. 岩土工程学报, 34 (12): 2277-2283. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201212022.htm
    李旭昶, 孙德安, 徐永福. 2019. 扬州土物理与力学性质指标的相关性分析[J]. 工程地质学报, 27 (2): 333-340. doi: 10.13544/j.cnki.jeg.2017-486
    罗仑博, 王媛, 黄景琦, 等. 2021. 海洋循环荷载对吸力桶基础水平承载力的影响研究[J]. 太阳能学报, 42 (3): 142-147. https://www.cnki.com.cn/Article/CJFDTOTAL-TYLX202103021.htm
    王志, 杜守继, 王德禹. 2009. Spar平台吸力式基础极限承载特性数值分析[J]. 海洋工程, 27 (3): 54-61. doi: 10.3969/j.issn.1005-9865.2009.03.008
    武科, 栾茂田, 范庆来, 等. 2008. 桶形基础承载性能弹塑性有限元数值分析[J]. 大连理工大学学报, 48 (5): 702-707. https://www.cnki.com.cn/Article/CJFDTOTAL-DLLG200805014.htm
    朱斌, 孔德琼, 童建国, 等. 2011. 粉土中吸力式桶形基础沉贯及抗拔特性试验研究[J]. 岩土工程学报, 33 (7): 1045-1053. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201107008.htm
    朱文波, 戴国亮, 袁龙锦, 等. 2018. 吸力式沉箱基础长期水平荷载作用下承载特性试验研究[J]. 海洋工程, 36 (3): 26-32. https://www.cnki.com.cn/Article/CJFDTOTAL-HYGC201803004.htm
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(11)  / Tables(1)

    Article views (136) PDF downloads(27) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint