Citation: | Fan Zhihan, Jia Yonggang, Teng Xiuying, et al. 2021. Review on potential engineering geological environment impacts of deep-sea polymetallic nodules mining[J].Journal of Engineering Geology, 29(6): 1676-1691. doi: 10.13544/j.cnki.jeg.2021-0260 |
Achurra L E,Lacassie J P,Le Roux J P,et al. 2009. Manganese nodules in the Miocene Bahía Inglesa Formation, north-central Chile: Petrography, geochemistry, genesis and palaeoceanographic significance[J]. Sedimentary Geology, 217(1-4): 128-139. doi: 10.1016/j.sedgeo.2009.03.016
|
Ahnert A, Borowski C. 2000. Environmental risk assessment of anthropogenic activity in the deep-sea[J]. Journal of Aquatic Ecosystem Stress and Recovery, 7 (4): 299-315. doi: 10.1023/A:1009963912171
|
Amos A F, Roels O A. 1977. Environmental aspects of manganese nodule mining[J]. Marine Policy, 1 (2): 156-163. doi: 10.1016/0308-597X(77)90050-1
|
Ardron J A, Simon-Lledó E, Jones D O B, et al. 2019. Detecting the effects of deep-seabed nodule mining: simulations using megafaunal data from the clarion-clipperton zone[J]. Frontiers in Marine Science, 6: 1-13. doi: 10.3389/fmars.2019.00001
|
Balaram V. 2019. Rare earth elements: A review of applications, occurrence, exploration, analysis, recycling, and environmental impact[J]. Geoscience Frontiers, 10 (4): 1285-1303. doi: 10.1016/j.gsf.2018.12.005
|
Bau M, Koschinsky A, Dulski P, et al. 1996. Comparison of the partitioning behaviours of yttrium, rare earth elements, and titanium between hydrogenetic marine ferromanganese crusts and seawater[J]. Geochimica et Cosmochimica Acta, 60 (10): 1709-1725. doi: 10.1016/0016-7037(96)00063-4
|
Beaudoin Y, Bredbenner A, Elaine Baker, et al. 2014. Wealth in the Oceans: Deep sea mining on the horizon?[J]. Environmental Development, 12 : 50-61. doi: 10.1016/j.envdev.2014.07.001
|
Bornhold B D, Ren P, Prior D B. 1994. High-frequency turbidity currents in British Columbia fjords[J]. Geo-Marine Letters, 14 (4): 238-243. doi: 10.1007/BF01274059
|
Bourrel M, Thiele T, Currie D. 2018. The common of heritage of mankind as a means to assess and advance equity in deep sea mining[J]. Marine Policy, 95 : 311-316. doi: 10.1016/j.marpol.2016.07.017
|
Burd B, Macdonald R, Boyd J. 2000. Punctuated recovery of sediments and benthic infauna: A 19-year study of tailings deposition in a British Columbia fjord[J]. Marine Environmental Research, 49 (2): 145-175. doi: 10.1016/S0141-1136(99)00058-6
|
Cai S Q, Zhang W J, Wang S A. 2007. An advance in marine environment observation technology[J]. Journal of Tropical Oceanography, 26 (3): 76-81. http://en.cnki.com.cn/Article_en/CJFDTOTAL-RDHY200703013.htm
|
Castilla J C, Nealler E. 1978. Marine environmental impact due to mining activities of El Salvador copper mine, Chile[J]. Marine Pollution Bulletin, 9 (3): 67-70. doi: 10.1016/0025-326X(78)90451-4
|
Chen Z T, Zhang J L, Xu M Z. 1995. Commercial deep sea mining of solid mineral resources: Fantastic or realistic[J]. Geological Science and Technology Information, (2): 81-84. http://en.cnki.com.cn/Article_en/CJFDTotal-DZKQ502.014.htm
|
Choi J, Hong S, Chi S, et al. 2011. Probability distribution for the shear strength of seafloor sediment in the KR5 area for the development of manganese nodule miner[J]. Ocean Engineering, 38(17-18): 2033-2041. doi: 10.1016/j.oceaneng.2011.09.011
|
Christiansen B, Denda A, Christiansen S. 2019. Potential effects of deep seabed mining on pelagic and benthopelagic biota[J]. Marine Policy: 103442. http://www.sciencedirect.com/science/article/pii/S0308597X18306407
|
Cuyvers L, Berry W, Gjerde K, et al. 2018. Deep seabed mining: A rising environmental challenge[R]. Gland: International Union for Conservation of Nature and Nature Resources.
|
Da Ros Z, Dell'Anno A, Morato T, et al. 2019. The deep sea: The new frontier for ecological restoration[J]. Marine Policy, 108: 103642. doi: 10.1016/j.marpol.2019.103642
|
Dai Y, Liu S J. 2013. Researches on deep ocean mining robots: status and development[J]. Robot, 35 (3): 363-375. doi: 10.3724/SP.J.1218.2013.00363
|
Ding L H, Gao Y Q, Jian Q, et al. 2003. The review of development of ocean polymetallic nodule collecting technique in China[J]. Mining Research and Development, 23 (4): 5-7, 27. http://en.cnki.com.cn/Article_en/CJFDTOTAL-KYYK200304002.htm
|
Du L T, Lü X B. 2003. A review of the study on polymetallic nodules in ocean[J]. Geology and Resources, 12 (3): 185-187. http://en.cnki.com.cn/Article_en/CJFDTOTAL-GJSD200303008.htm
|
Durden J M, Lallier L E, Murphy K, et al. 2018. Environmental impact assessment process for deep-sea mining in 'the Area'[J]. Marine Policy, 87 : 194-202. doi: 10.1016/j.marpol.2017.10.013
|
Durden J M, Murphy K, Jaeckel A, et al. 2017. A procedural framework for robust environmental management of deep-sea mining projects using a conceptual model[J]. Marine Policy, 84 : 193-201. doi: 10.1016/j.marpol.2017.07.002
|
Earney F C F. 2012. Marine mineral resources[M]. Routledge.
|
Ellis D V. 2008. A review of some environmental issues affecting marine mining[J]. Marine Georesources & Geotechnology, 1 (19): 51-63. http://www.researchgate.net/publication/314814578_A_Review_of_Some_Environmental_Issues_Affecting_Marine_Mining
|
Ellis J I, Clark M R, Rouse H L, et al. 2017. Environmental management frameworks for offshore mining: the New Zealand approach[J]. Marine Policy, 84 : 178-192. doi: 10.1016/j.marpol.2017.07.004
|
Fan N, Zhao W, Nian T K, et al. 2017. A new full-flow penetrometer for strength Test of submarine mud flow[J]. Journal of Shanghai Jiao Tong University, 51 (4): 456-461. http://www.researchgate.net/publication/318587638_A_New_Full-Flow_Penetrometer_for_Strength_Test_of_Submarine_Mud_Flow
|
Fang Y X, Bao G S, Jin X L. 2000. Prospects for the development and utilization of deep sea resources in the 21st century[J]. Marine Science Bulletin, 19 (5): 73-78. http://en.cnki.com.cn/Article_en/CJFDTOTAL-HUTB200005010.htm
|
Fan Z H, Jia Y G, et al. 2020. Research on in-situ observation system of seabed boundary layer based on self-potential measurement[C]//IOP Conference Series Earth and Environmental Science, 570: 062035.
|
Franks D M, Boger D V, Côte C M, et al. 2011. Sustainable development principles for the disposal of mining and mineral processing wastes[J]. Resources Policy, 36 (2): 114-122. doi: 10.1016/j.resourpol.2010.12.001
|
Glasby G P. 2000. Lessons learned from deep-sea mining[J]. Science, (289): 551-553. http://www.ganino.com/games/Science/science%20magazine%201999-2000/root/data/Science%201999-2000/pdf/2000_v289_n5479/p5479_0551.pdf
|
Gollner S, Kaiser S, Menzel L, et al. 2017. Resilience of benthic deep-sea fauna to mining activities[J]. Marine Environmental Research, 129 : 76-101. doi: 10.1016/j.marenvres.2017.04.010
|
Guo L. 2016. Development and application of in-situ integrated observation system into bottom boundary layer[D]. Qingdao: Ocean University of China.
|
Haffert L, Haeckel M, de Stigter H, et al. 2020. Assessing the temporal scale of deep-sea mining impacts on sediment biogeochemistry[J]. Biogeosciences, 17 (10): 2767-2789. doi: 10.5194/bg-17-2767-2020
|
He Z Y, Lin J G, Yang B H, et al. 2016. The progress and viewpoints on the development of the regulations for mineral exploitation in the area[J]. Pacific Journal, 24 (10): 9-17. http://search.cnki.net/down/default.aspx?filename=TPYX201610002&dbcode=CJFD&year=2016&dflag=pdfdown
|
He Z Y. 2003. Environmental impact of deep sea mining[J]. Ocean Minerals, (1): 61-65. http://www.researchgate.net/publication/254538415_The_Environmental_Impact_of_Deep_Sea_Mining
|
Hein J R, Koschinsky A, Kuhn T. 2020. Deep-ocean polymetallic nodules as a resource for critical materials[J]. Nature Reviews Earth & Environment, 1 (3): 158-169.
|
Hein J R, Mizell K, Koschinsky A, et al. 2013. Deep-ocean mineral deposits as a source of critical metals for high-and green-technology applications: Comparison with land-based resources[J]. Ore Geology Reviews, 51 : 1-14. doi: 10.1016/j.oregeorev.2012.12.001
|
Hirota J. 1981. Potential effects of deep-sea minerals mining on macrozooplankton in the north equatorial pacific[J]. Marine Mining, 3 (1): 19-57. http://www.researchgate.net/publication/282371524_POTENTIAL_EFFECTS_OF_DEEP-SEA_MINERALS_MINING_ON_MACROZOOPLANKTON_IN_THE_NORTH_EQUATORIAL_PACIFIC
|
Huang C Y, Sheng G N. 1993. A survey of research on the development of submarine manganese nodules[J]. China's Manganese Industry, (4): 44-45.
|
Jaeckel A. 2016. Deep seabed mining and adaptive management: The procedural challenges for the International Seabed Authority[J]. Marine Policy, 70 : 205-211. doi: 10.1016/j.marpol.2016.03.008
|
Jia Y G, Tian Z C, Zhang B W, et al. 2018. Deep sea bottom boundary layer dynamic observation device and method: China, 201810276805.7. [P]. 2018-03-30.
|
Jia Y G, Wang Z H, Liu X L, et al. 2017. The research progress of field investigation and in-situ observation methods for submarine landslide[J]. Periodical of Ocean University of China, 47 (10): 61-72. http://en.cnki.com.cn/Article_en/CJFDTotal-QDHY201710010.htm
|
Jiang B G. 2011. Study on industrialization development of deep-sea strategic resoruces explotiation in China—Exploitation of deep-sea mineral and biological resources as cases[D]. Qingdao: Ocean University of China.
|
Jones D O B, Ardron J A, Colaço A, et al. 2018. Environmental considerations for impact and preservation reference zones for deep-sea polymetallic nodule mining[J]. Marine Policy, doi: 10.1016/j.marpol.2018.10.025.
|
Kang Y, Liu S, Zou W, et al. 2019. Design and analysis of an innovative deep-sea lifting motor pump[J]. Applied Ocean Research, 82 : 22-31. doi: 10.1016/j.apor.2018.10.018
|
Kim R E, Anton D. 2014. The application of the precautionary and adaptive management approaches in the seabed mining context: Trans-Tasman Resources Ltd Marine Consent Decision Under New Zealand's Exclusive Economic Zone and Continental Shelf(Environmental Effects) Act 2012[J]. Social Science Electronic Publishing, 30 (1): 175-188. http://papers.ssrn.com/sol3/papers.cfm?abstract_id=2515186
|
Kim S, Cho S, Lim W, et al. 2019. Probability distribution for size and mass of a nodule in the KR5 area for the development of a manganese nodule miner[J]. Ocean Engineering, 171 : 131-138. doi: 10.1016/j.oceaneng.2018.10.041
|
Lallier L E, Maes F. 2016. Environmental impact assessment procedure for deep seabed mining in the area: Independent expert review and public participation[J]. Marine Policy, 70 : 212-219. doi: 10.1016/j.marpol.2016.03.007
|
Le Meur P, Arndt N, Christmann P, et al. 2018. Deep-sea mining prospects in French Polynesia: Governance and the politics of time[J]. Marine Policy, 95 : 380-387. doi: 10.1016/j.marpol.2016.07.020
|
Leduc D, Pilditch C A. 2013. Effect of a physical disturbance event on deep-sea nematode community structure and ecosystem function[J]. Journal of Experimental Marine Biology and Ecology, 440 : 35-41. doi: 10.1016/j.jembe.2012.11.015
|
Leduc D, Rowden A A, Torres L G, et al. 2015. Distribution of macro-infaunal communities in phosphorite nodule deposits on Chatham Rise, Southwest Pacific: Implications for management of seabed mining[J]. Deep Sea Research Part I: Oceanographic Research Papers, 99 : 105-118. doi: 10.1016/j.dsr.2015.01.006
|
Levin L A, Mengerink K, Gjerde K M, et al. 2016. Defining"serious harm" to the marine environment in the context of deep-seabed mining[J]. Marine Policy, 74 : 245-259. doi: 10.1016/j.marpol.2016.09.032
|
Li X, Xu Y, Yang L, et al. 2017. Marine environmental monitoring in major countries of the world and its enlightenment to China[J]. Marine Environmental Science, 36 (3): 474-480. http://search.cnki.net/down/default.aspx?filename=HYHJ201703024&dbcode=CJFD&year=2017&dflag=pdfdown
|
Li Z H, Jia Y G, Bo J S. 2019. Review of academic annual symposium of engineering investigation specialized committee of the Chinese Institute of Seismology in 2019 and the 4th symposium on development strategies of marine engineering geology[J]. Journal of Engineering Geology, 27 (6): 1483-1487. http://en.cnki.com.cn/Article_en/CJFDTotal-GCDZ201906031.htm
|
Liang D H, He G W, Zhu K C. 2014. The small-scale distributing characteristics of the polymetallic nodules in the West China Example Area[J]. Acta Oceanologica Sinica, 36 (4): 33-39. http://en.cnki.com.cn/Article_en/ http://search.cnki.net/down/default.aspx?filename=SEAC201404004&dbcode=CJFD&year=2014&dflag=pdfdown
|
Lin T H, Chen C, Watanabe H K, et al. 2019. Using soundscapes to assess deep-sea benthic ecosystems[J]. Trends in Ecology & Evolution, 12 (34): 1066-1069. http://www.sciencedirect.com/science/article/pii/S0169534719302848
|
Liu S J, Liu C, Dai Y. 2014. Status and progress on researches and developments of deep ocean mining equipments[J]. Journal of Mechanical Engineering, 50 (2): 8-18. doi: 10.3901/JME.2014.02.008
|
Liu X L, Lu Y, Wang Y, et al. 2020. Exploration of marine resources and marine engineering geology: Summary on the 2nd international symposium on marine engineering geology(ISMEG 2019)[J]. Journal of Engineering Geology, 28 (1): 169-177.
|
Liu X L, Zhu C Q, Wang D, et al. 2017. Progress in marine engineering gology: summary of the international symposium of marine engineering geology[J]. Journal of Engineering Geology, 25 (3): 886-891. http://en.cnki.com.cn/Article_en/CJFDTotal-GCDZ201703038.htm
|
Lodge M, Johnson D, Le Gurun G, et al. 2014. Seabed mining: International Seabed Authority environmental management plan for the Clarion-Clipperton Zone. A partnership approach[J]. Marine Policy, 49 : 66-72. doi: 10.1016/j.marpol.2014.04.006
|
Lu Y, Chu F Y, Dong Y H, et al. 2020. Formation of nodules on continental slopes in the northeast of the South China Sea and its implications for cold seep[J]. Journal of Marine Science, 38 (2): 16-25.
|
Lü W Z. 2008. Geology of deposits in the Chinese Pioneering Area of Pacific Polymetallic Nodules[M]. Beijing: Ocean Press.
|
Ma W, Schott D, van Rhee C. 2019. Numerical calculations of environmental impacts for deep sea mining activities[J]. Science of The Total Environment, 652 : 996-1012. doi: 10.1016/j.scitotenv.2018.10.267
|
Mero J L. 1965. The mineral resources of the sea[M]. Elsevier.
|
Mestre N C, Rocha T L, Canals M, et al. 2017. Environmental hazard assessment of a marine mine tailings deposit site and potential implications for deep-sea mining[J]. Environmental Pollution, 228 : 169-178. doi: 10.1016/j.envpol.2017.05.027
|
Miller K A, Thompson K F, Johnston P, et al. 2018. An overview of seabed mining including the current state of development, environmental impacts, and knowledge gaps[J]. Frontiers in Marine Science, 4: 418. doi: 10.3389/fmars.2017.00418
|
Montserrat F, Guilhon M, Corrêa P V F, et al. 2019. Deep-sea mining on the Rio Grande Rise(Southwestern Atlantic): A review on environmental baseline, ecosystem services and potential impacts[J]. Deep Sea Research Part I: Oceanographic Research Papers, 145 : 31-58. doi: 10.1016/j.dsr.2018.12.007
|
Ni J Y, Zhou H Y, Peng X T, et al. 2002. The benthic environmental features in the China Pioneer Area, northeastern Pacific Ocean[J]. Marine Geology & Quaternary Geology, 22 (1): 43-47. http://en.cnki.com.cn/Article_en/CJFDTOTAL-HYDZ200201007.htm
|
Oebius H U, Becker H J, Rolinski S, et al. 2001. Parametrization and evaluation of marine environmental impacts produced by deep-sea manganese nodule mining[J]. Deep-Sea Research Part Ⅱ, 48 : 3453-3467. doi: 10.1016/S0967-0645(01)00052-2
|
Ozturgut E, Lavelle J W, Burns R E. 1981. Impacts of manganese nodule mining on the environment: Results from pilot-scale mining tests in the north equatorial pacific[J]. Elsevier Oceanography Series, (27): 437-474. http://www.sciencedirect.com/science/article/pii/S042298940871420X
|
Peng S F. 2020. Design and implementation of measurement and control system of in-situ geomechanics measurement device for seabed sediment[J]. Mining and Metallurgical Engineering, 40 (6): 26-29.
|
Petersen S, Krätschell A, Augustin N, et al. 2016. News from the seabed-Geological characteristics and resource potential of deep-sea mineral resources[J]. Marine Policy, 70 : 175-187. doi: 10.1016/j.marpol.2016.03.012
|
Petterson M G, Tawake A. 2019. The Cook Islands(South Pacific) experience in governance of seabed manganese nodule mining[J]. Ocean & Coastal Management, 167 : 271-287. http://www.sciencedirect.com/science/article/pii/S096456911830334X
|
Prisetiahadi K, Yanagi T. 2008. Seasonal variation in the behavior of tailing wastes in Buyat Bay, Indonesia[J]. Marine Pollution Bulletin, 57(1-5): 170-181. doi: 10.1016/j.marpolbul.2007.10.034
|
Qi H S, Wang Y. 2017. Numerical simulation on the disturbance of polymetallic nodule mining to marine sediments[J]. Journal of Zhejiang Sci-Tech University(Natural Science), 37 (4): 533-537. http://en.cnki.com.cn/Article_en/CJFDTotal-ZJSG201704011.htm
|
Qiu D Y, Fei X J, Ma Y. 1997. Effects of exploitation of oceanics polymetallic nodule upon environment[J]. China's Manganese Industry, 15 (2): 46-49. http://en.cnki.com.cn/Article_en/CJFDTOTAL-ZGMM702.010.htm
|
Ramirez M, Massolo S, Frache R, et al. 2005. Metal speciation and environmental impact on sandy beaches due to El Salvador copper mine, Chile[J]. Marine Pollution Bulletin, 50 (1): 62-72. doi: 10.1016/j.marpolbul.2004.08.010
|
Ramirez-Llodra E, Trannum H C, Evenset A, et al. 2015. Submarine and deep-sea mine tailing placements: A review of current practices, environmental issues, natural analogs and knowledge gaps in Norway and internationally[J]. Marine Pollution Bulletin, 97(1-2): 13-35. doi: 10.1016/j.marpolbul.2015.05.062
|
Sanae, Chiba, Hideaki, et al. 2018. Human footprint in the abyss: 30 year records of deep-sea plastic debris-ScienceDirect[J]. Marine Policy, 96 : 204-212. doi: 10.1016/j.marpol.2018.03.022
|
Sharma R. 2011. Deep-Sea mining: economic, technical, technological, and environmental considerations for sustainable development[J]. Marine Technology Society Journal, 45 (5): 28-41. doi: 10.4031/MTSJ.45.5.2
|
Sharma R, Sankar S J, Samanta S, et al. 2010. Image analysis of seafloor photographs for estimation of deep-sea minerals[J]. Geo-Marine Letters, 30 (6): 617-626. doi: 10.1007/s00367-010-0205-z
|
Sharma R. 2013. Deep-Sea impact experiments and their future requirements[J]. Marine Georesources & Geotechnology, 23 (4): 331-338.
|
Sharma R. 2015. Environmental issues of deep-sea mining[J]. Procedia Earth and Planetary Science, 11 : 204-211. doi: 10.1016/j.proeps.2015.06.026
|
Shi X F, Fu Y Z, Li B, et al. 2021. Research on deep-sea minerals in China: progress and discovery(2011-2020)[J]. Bulletin of Mineralogy, Petrology and Geochemistry, 42 (2): 305-318.
|
Simon-Lledó E, Bett B J, Huvenne V A I, et al. 2019. Megafaunal variation in the abyssal landscape of the Clarion Clipperton Zone[J]. Progress in Oceanography, 170 : 119-133. doi: 10.1016/j.pocean.2018.11.003
|
Smit M G D, Holthaus K I E, Trannum H C, et al. 2008. Species sensitivity distributions for suspended clays, sediment burial, and grain size change in the marine environment[J]. Environmental Toxicology & Chemistry, 27 (4): 1006-1012. http://www.onacademic.com/detail/journal_1000034852986710_0b8a.html
|
Song L Q. 1999. Geotechnical properties of oceanic polymetallic nodule sediments[J]. Acta Oceanologica Sinica, 21 (6): 47-54. http://epub.cnki.net/grid2008/docdown/docdownload.aspx?filename=SEAC199906005&dbcode=CJFD&year=1999&dflag=pdfdown
|
Sparenberg O. 2019. A historical perspective on deep-sea mining for manganese nodules, 1965-2019[J]. The Extractive Industries and Society, 6 (3): 842-854. doi: 10.1016/j.exis.2019.04.001
|
Spearman J, Taylor J, Crossouard N, et al. 2020. Measurement and modelling of deep sea sediment plumes and implications for deep sea mining[J]. Scientific Reports, doi: 10.1038/s41598-020-61837-y.
|
Sui L R, Zhou H Y, Shen H T. 1995. Progress in the research on resources of marine multimeal tuberculum in China[J]. Science and Technology Review(Beijing), 29-31. http://en.cnki.com.cn/Article_en/CJFDTotal-KJDB510.011.htm
|
Thiel H, Weikert H, Karbe L. 2014. Risk assessment for mining metalliferous muds in the deep red sea author(s): hjalmar thiel, horst weikert and ludwig karbe source: ambio[J]. Royal Swedish Academy of Sciences, 15(1986): 34-41.
|
Trueblood D D, Ozturgut E. 1997. The benthic impact experiment: a study of the ecological impacts of deep seabed mining on abyssal benthic communities[C]//The Seventh International Offshore and Polar Engineering Conference. Honolulu, Hawaii, USA: [s. n. ].
|
Trueblood D D. 1992. US cruise report for BIE Ⅱ (April 10~May 29, 1992)[R]. Washington, D C: NOAA.
|
Volz J B, Haffert L, Haeckel M, et al. 2020. Impact of small-scale disturbances on geochemical conditions, biogeochemical processes and element, fluxes in surface sediments of the eastern Clarion-Clipperton Zone, Pacific Ocean[J]. Biogeosciences, 7(4): 1113-1131. http://www.researchgate.net/publication/335281994_Impact_of_small-scale_disturbances_on_geochemical_conditions_biogeochemical_processes_and_element_fluxes_in_surface_sediments_of_the_eastern_Clarion-Clipperton_Zone_Pacific_Ocean
|
Vonnahme T R, Molari M, Janssen F, et al. 2020. Effects of a deep-sea mining experiment on seafloor microbial communities and functions after 26 years[J]. Science Advances, 6 (18): 1-14. http://www.researchgate.net/publication/341029843_Effects_of_a_deep-sea_mining_experiment_on_seafloor_microbial_communities_and_functions_after_26_years
|
Wang C S, Zhou H Y, Ni J Y. 2003. Studies on the environmental effects of deep-sea mining: progress, problems and prospects[J]. Donghai Marine Science, 21 (1): 55-64. http://en.cnki.com.cn/Article_en/CJFDTOTAL-DHHY200301008.htm
|
Wang C S, Zhou H Y. 2001a. Assessment on the potential impacts of deep-sea mining on the marine ecosystem Ⅰ. Epipelagic ecosystem[J]. Marine Environmental Science, 20 (1): 1-6. http://en.cnki.com.cn/Article_en/CJFDTotal-HYHJ200101000.htm
|
Wang C S, Zhou H Y. 2001b. Assessment of potential impacts of deep-sea mining on marine ecosystem Ⅱ. Benthic ecosystem[J]. Marine Environmental Science, 20 (1): 32-37. http://search.cnki.net/down/default.aspx?filename=HYHJ200102006&dbcode=CJFD&year=2001&dflag=pdfdown
|
Wang S R, Yang N, Wang G M. 2000. Strength characteristics of deep sea deposits in China's mining region in the Pacific Ocean's C—C zone[J]. Mining and Metallurgical Engineering, 20 (3): 21-24. http://en.cnki.com.cn/Article_en/CJFDTOTAL-KYGC200003008.htm
|
Wu B, Cheng X M, Tian C, et al. 2016. Research advance on hydrodynamic techniques in deep sea mining system[J]. Shipbuilding of China, 57 (3): 204-214. http://en.cnki.com.cn/Article_en/CJFDTOTAL-ZGZC201603023.htm
|
Wu S G, Zhang H Y, Jiao D F, et al. 2020. Prospect analysis of submarine mineral resources exploitation in South China Sea[J]. Science Technology and Engineering, 20 (31): 12673-12682. http://www.researchgate.net/publication/347136382_Prospect_Analysis_of_Submarine_Mineral_Resources_Exploitation_in_South_China_Sea
|
Yu M, Deng X G, Yao H Q, et al. 2018. The progress in the investigation and study of global deep-sea polumetallic nodules[J]. Geology in China, 45 (1): 29-38. http://en.cnki.com.cn/Article_en/CJFDTotal-DIZI201801004.htm
|
Yu Y J, Duan L C, Wang H F, et al. 2016. Preliminary study on physico-mechanical properties of deep-sea sediments from the western pacific[J]. Mining and Metallurgical Engineering, 36 (5): 1-4. http://en.cnki.com.cn/Article_en/CJFDTOTAL-KYGC201605001.htm
|
Yuan Y, Wei H, Zhao L, et al. 2009. Implications of intermittent turbulent bursts for sediment resuspension in a coastal bottom boundary layer: A field study in the western Yellow Sea, China[J]. Marine Geology, 263(1-4): 87-96. doi: 10.1016/j.margeo.2009.03.023
|
Zhang F Y, Zhang W Y, Feng X W. 2011. Distribution characteristics of abundance and grade of polymetallic nodules in the CC area of the Pacific Ocean[J]. Acta Mineralogica Sinic, (S): 711.
|
Zhang F Y, Zhang W Y, He G W, et al. 2001. Ocean polymetallic nodule resource evaluation principle and mining area delineation method[M]. Beijing: Ocean Press.
|
Zhang H, Jia Y G, Liu X L, et al. 2019. Progress in in-situ measurement of sediment mechanical properties for full ocean deepth[J]. Marine Geology Frontier, 35 (2): 1-9. http://en.cnki.com.cn/Article_en/CJFDTotal-HYDT201902001.htm
|
Zhang Y X, Lan H X, Li L P, et al. 2019. Combining statistical model and physical model for refined assessment of geological disaster—A case study of Longshan community in Fujian Province[J]. Journal of Engineering Geology, 27 (3): 608-622. http://en.cnki.com.cn/Article_en/CJFDTotal-GCDZ201903020.htm
|
Zhao H, Wang Y, Han F, et al. 2018. Acoustic pressure simulation and experiment design in seafloor mining environment[J]. Journal of Central South University, 25 (6): 1409-1417. doi: 10.1007/s11771-018-3836-2
|
Zhao Y Y, Zeng X G, Lang S Y. 2016. Review and prospect of deep sea mining system[J]. Marine Equipment/Materials & Marketing, (6): 39-41.
|
Zhao Y Y, Zeng X G, Lang S Y. 2017. The environmental impact of deep sea mining cannot be ignored[J]. Marine Equipment/Materials & Marketing, (1): 57-59.
|
Zhou H Y, Wang C S, Ni J Y. 2003. Existing experimental methods and results evaluation of the environmental impact of deep sea mining[M]. Beijing: Ocean Press.
|
Zhou H Y. 2008. Geological model of polymentallic nodule deposits based on the CCZ[J]. Geochimica, 37 (4): 373-381. http://en.cnki.com.cn/Article_en/CJFDTOTAL-DQHX200804010.htm
|
Zhou H Y. 2015. Metallogenetic mystery of deep sea ferromanganese nodules[J]. Chinese Journal of Nature, 37 (6): 397-404. http://en.cnki.com.cn/Article_en/CJFDTotal-ZRZZ201506002.htm
|
Zhu C Q, Zhou L, Zhang H, et al. 2017. Preliminary study of physical and mechanical properties of surface sediment in northern south China sea[J]. Journal of Engineering Geology, 25 (6): 1566-1573. http://www.researchgate.net/publication/334273055_Preliminary_Study_Of_Physical_And_Mechanical_Properties_Of_Surface_Sediment_In_Northern_South_China_Sea
|
蔡树群, 张文静, 王盛安. 2007. 海洋环境观测技术研究进展[J]. 热带海洋学报, 26 (3): 76-81. doi: 10.3969/j.issn.1009-5470.2007.03.014
|
陈宗团, 张吉林, 徐脉直. 1995. 深海固体矿产商业化采矿: 幻想与现实[J]. 地质科技情报, (2): 81-84. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ502.014.htm
|
戴瑜, 刘少军. 2013. 深海采矿机器人研究现状与发展[J]. 机器人, 35 (3): 363-375. https://www.cnki.com.cn/Article/CJFDTOTAL-JQRR201303017.htm
|
丁六怀, 高宇清, 简曲, 等. 2003. 中国大洋多金属结核集矿技术研究综述[J]. 矿业研究与开发, 23 (4): 5-7, 27. doi: 10.3969/j.issn.1005-2763.2003.04.002
|
杜灵通, 吕新彪. 2003. 大洋多金属结核研究概况[J]. 地质与资源, 12 (3): 185-187. doi: 10.3969/j.issn.1671-1947.2003.03.009
|
范宁, 赵维, 年廷凯, 等. 2017. 一种测试海底泥流强度的新型全流动贯入仪[J]. 上海交通大学学报, 51 (4): 456-461. https://www.cnki.com.cn/Article/CJFDTOTAL-SHJT201704012.htm
|
方银霞, 包更生, 金翔龙. 2000.21世纪深海资源开发利用的展望[J]. 海洋通报, 19 (5): 73-78. doi: 10.3969/j.issn.1001-6392.2000.05.011
|
郭磊. 2016. 海底边界层原位综合观测系统开发与应用研究[D]. 青岛: 中国海洋大学.
|
何宗玉, 林景高, 杨保华, 等. 2016. 国际海底区域采矿规章制定的进展与主张[J]. 太平洋学报, 24 (10): 9-17. https://www.cnki.com.cn/Article/CJFDTOTAL-TPYX201610002.htm
|
何宗玉. 2003. 深海采矿的环境影响[J]. 大洋矿产, (1): 61-65. https://www.cnki.com.cn/Article/CJFDTOTAL-KTGC201902005.htm
|
黄朝钰, 盛桂浓. 1993. 日本开发海底锰结核的研究概况[J]. 中国锰业, (4): 44-45. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGMM199304013.htm
|
贾永刚, 田壮才, 张博文, 等. 2018. 深海海底边界层动态观测装置和方法: 中国, 201810276805.7. [P]. 2018-03-30.
|
贾永刚, 王振豪, 刘晓磊, 等. 2017. 海底滑坡现场调查及原位观测方法研究进展[J]. 中国海洋大学学报(自然科学版), 47 (10): 61-72. https://www.cnki.com.cn/Article/CJFDTOTAL-QDHY201710010.htm
|
姜秉国. 2011. 中国深海战略性资源开发产业化发展研究——以深海矿产和生物资源开发为例[D]. 青岛: 中国海洋大学.
|
李潇, 许艳, 杨璐, 等. 2017. 世界主要国家海洋环境监测情况及对我国的启示[J]. 海洋环境科学, 36 (3): 474-480. https://www.cnki.com.cn/Article/CJFDTOTAL-HYHJ201703024.htm
|
李正辉, 贾永刚, 薄景山. 2019. 中国地震学会工程勘察专业委员会2019学术年会暨第四届海洋工程地质发展战略研讨会回顾[J]. 工程地质学报, 27 (6): 1483-1487. doi: 10.13544/j.cnki.jeg.2019-380
|
梁东红, 何高文, 朱克超. 2014. 中国多金属结核西示范区的结核小尺度分布特征[J]. 海洋学报, 36 (4): 33-39. https://www.cnki.com.cn/Article/CJFDTOTAL-SEAC201404004.htm
|
刘少军, 刘畅, 戴瑜. 2014. 深海采矿装备研发的现状与进展[J]. 机械工程学报, 50 (2): 8-18. https://www.cnki.com.cn/Article/CJFDTOTAL-JXXB201402002.htm
|
刘晓磊, 陆扬, 王胤, 等. 2020. 海洋资源开发与海洋工程地质——第二届国际海洋工程地质学术研讨会(ISMEG 2019)总结[J]. 工程地质学报, 28 (1): 169-177. doi: 10.13544/j.cnki.jeg.2019-493
|
刘晓磊, 朱超祁, 王栋, 等. 2017. 海洋工程地质进展——国际海洋工程地质学术研讨会(ISMEG 2016)总结[J]. 工程地质学报, 25 (3): 886-891. doi: 10.13544/j.cnki.jeg.2017.03.038
|
陆怡, 初凤友, 董彦辉, 等. 2020. 南海东北部陆坡结核成因及对冷泉活动的指示[J]. 海洋学研究, 38 (2): 16-25. doi: 10.3969/j.issn.1001-909X.2020.02.003
|
吕文正. 2008. 太平洋多金属结核中国开辟区矿床地质[M]. 北京: 海洋出版社.
|
倪建宇, 周怀阳, 彭晓彤, 等. 2002. 中国多金属结核开辟区的深海环境[J]. 海洋地质与第四纪地质, 22 (1): 43-47. https://www.cnki.com.cn/Article/CJFDTOTAL-HYDZ200201007.htm
|
彭赛锋. 2020. 海底沉积物原位土工力学测量装置测控系统设计与实现[J]. 矿冶工程, 40 (6): 26-29. doi: 10.3969/j.issn.0253-6099.2020.06.007
|
齐瀚琛, 王英. 2017. 多金属结核采矿对海底沉积物扰动的数值分析[J]. 浙江理工大学学报(自然科学版), 37 (4): 533-537. https://www.cnki.com.cn/Article/CJFDTOTAL-ZJSG201704011.htm
|
邱电云, 费雪锦, 马莹. 1997. 大洋多金属结核开发对环境的影响[J]. 中国锰业, 15 (2): 46-49. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGMM702.010.htm
|
石学法, 符亚洲, 李兵, 等. 2021. 我国深海矿产研究: 进展与发现(2011~2020年)[J]. 矿物岩石地球化学通报, 42 (2): 305-318. https://www.cnki.com.cn/Article/CJFDTOTAL-KYDH202102004.htm
|
宋连清. 1999. 大洋多金属结核矿区沉积物土工性质[J]. 海洋学报, 21 (6): 47-54. https://www.cnki.com.cn/Article/CJFDTOTAL-SEAC199906005.htm
|
眭良仁, 周怀阳, 沉华悌. 1995. 我国大洋多金属结核资源勘查进展[J]. 科技导报(北京), 29-31. https://www.cnki.com.cn/Article/CJFDTOTAL-KJDB510.011.htm
|
王春生, 周怀阳, 倪建宇. 2003. 深海采矿环境影响研究: 进展、问题与展望[J]. 东海海洋, 21 (1): 55-64. doi: 10.3969/j.issn.1001-909X.2003.01.008
|
王春生, 周怀阳. 2001a. 深海采矿对海洋生态系统影响的评价Ⅰ. 上层生态系统[J]. 海洋环境科学, 20 (1): 1-6. https://www.cnki.com.cn/Article/CJFDTOTAL-HYHJ200101000.htm
|
王春生, 周怀阳. 2001b. 深海采矿对海洋生态系统影响的评价Ⅱ. 底层生态系统[J]. 海洋环境科学, 20 (2): 32-37. https://www.cnki.com.cn/Article/CJFDTOTAL-HYHJ200102006.htm
|
王树仁, 阳宁, 王贵满. 2000. 太平洋C—C区中国矿区深海沉积物的强度特性研究[J]. 矿冶工程, 20 (3): 21-24. doi: 10.3969/j.issn.0253-6099.2000.03.007
|
吴波, 程小明, 田超, 等. 2016. 深海采矿系统水动力技术研究综述[J]. 中国造船, 57 (3): 204-214. doi: 10.3969/j.issn.1000-4882.2016.03.023
|
吴时国, 张汉羽, 矫东风, 等. 2020. 南海海底矿物资源开发前景[J]. 科学技术与工程, 20 (31): 12673-12682. doi: 10.3969/j.issn.1671-1815.2020.31.001
|
于淼, 邓希光, 姚会强, 等. 2018. 世界海底多金属结核调查与研究进展[J]. 中国地质, 45 (1): 29-38. https://www.cnki.com.cn/Article/CJFDTOTAL-DIZI201801004.htm
|
于彦江, 段隆臣, 王海峰, 等. 2016. 西太平洋深海沉积物的物理力学性质初探[J]. 矿冶工程, 36 (5): 1-4. doi: 10.3969/j.issn.0253-6099.2016.05.001
|
张富元, 章伟艳, 冯旭文. 2011. 太平洋CC区多金属结核丰度和品位分布特征[J]. 矿物学报, (增刊), 711. https://www.cnki.com.cn/Article/CJFDTOTAL-KWXB2011S1374.htm
|
张富元, 章伟艳, 何高文, 等. 2001. 大洋多金属结核资源评价原理和矿区圈定方法[M]. 北京: 海洋出版社.
|
张红, 贾永刚, 刘晓磊, 等. 2019. 全海深海底沉积物力学特性原位测试技术[J]. 海洋地质前沿, 35 (2): 1-9. https://www.cnki.com.cn/Article/CJFDTOTAL-HYDT201902001.htm
|
仉义星, 兰恒星, 李郎平, 等. 2019. 综合统计模型和物理模型的地质灾害精细评估——以福建省龙山社区为例[J]. 工程地质学报, 27 (3): 608-622. doi: 10.13544/j.cnki.jeg.2018-270
|
赵羿羽, 曾晓光, 郎舒妍. 2016. 深海采矿系统现状及展望[J]. 船舶物资与市场, (6): 39-41. https://www.cnki.com.cn/Article/CJFDTOTAL-CBWZ201606018.htm
|
赵羿羽, 曾晓光, 郎舒妍. 2017. 深海采矿环境影响不容忽视[J]. 船舶物资与市场, (1): 57-59. https://www.cnki.com.cn/Article/CJFDTOTAL-CBWZ201701017.htm
|
周怀阳, 王春生, 倪建宇. 2003. 现有深海采矿环境影响实验方法和结果评价[M]. 北京: 海洋出版社.
|
周怀阳. 2008. 基于CC区的多金属结核矿床成因地质模型[J]. 地球化学, 37 (4): 373-381. doi: 10.3321/j.issn:0379-1726.2008.04.011
|
周怀阳. 2015. 深海海底铁锰结核的秘密[J]. 自然杂志, 37 (6): 397-404. https://www.cnki.com.cn/Article/CJFDTOTAL-ZRZZ201506002.htm
|
朱超祁, 周蕾, 张红, 等. 2017. 南海北陆架坡表面沉积物的物理力学性质初探[J]. 工程地质学报, 25 (6): 1566-1573. doi: 10.13544/j.cnki.jeg.2017.06.020
|